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Abstract: Routine structure prediction of new folds is still a challenging task for computational biology. The chal-

lenge is not only in the proper determination of overall fold but also in building models of acceptable resolution,

useful for modeling the drug interactions and protein–protein complexes. In this work we propose and test a compre-

hensive approach to protein structure modeling supported by sparse, and relatively easy to obtain, experimental data.

We focus on chemical shift-based restraints from NMR, although other sparse restraints could be easily included. In

particular, we demonstrate that combining the typical NMR software with artificial intelligence-based prediction of

secondary structure enhances significantly the accuracy of the restraints for molecular modeling. The computational

procedure is based on the reduced representation approach implemented in the CABS modeling software, which

proved to be a versatile tool for protein structure prediction during the CASP (CASP stands for critical assessment

of techniques for protein structure prediction) experiments (see http://predictioncenter/CASP6/org). The method is

successfully tested on a small set of representative globular proteins of different size and topology, including the

two CASP6 targets, for which the required NMR data already exist. The method is implemented in a semi-auto-

mated pipeline applicable to a large scale structural annotation of genomic data. Here, we limit the computations to

relatively small set. This enabled, without a loss of generality, a detailed discussion of various factors determining

accuracy of the proposed approach to the protein structure prediction.
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Introduction

Basically, there are two distinct situations in the computational

determination of protein structure. The classical one is the com-

parative modeling, where the new structure is build on the scaf-

fold of a protein structure due to homology or analogy, resulting

from convergent evolution, is expected to be similar to the query

structure. However, quite frequently (we do not know exact per-

centage of cases for more complex organisms) it is impossible

to find a proper template for the comparative modeling. In such

cases the structure prediction needs to be done in a de novo

fashion. In principle, de novo protein folding does not require

any information about the homologues, or structural analogs, of

the query protein. The prediction is based only on the protein-

like biases derived from the database of known protein struc-

tures and the appropriate search algorithm of the protein confor-

mational space. Despite the success of the CABS algorithm in

the last CASP6 experiment,1 de novo structure determination

still remains the challenging task, and in general is limited to

relatively small proteins of not too complex topology. Moreover,

the resulting structures are of a rather low resolution. There are

exceptions from this statement, although they still seem to

remain in a status of ‘‘proof of the principle’’ than a routine

computational methodology.2–4

In this work we enhanced de novo prediction with the appli-

cation of the sparse experimental data. Here, the term de novo

means folding simulations without any specific structural tem-

plates, although the preceding prediction of secondary structure

employs local sequence similarity to known protein structures.

The bias from possible homologous proteins introduced this way

into the CABS force field is negligible (due to the averaging

with thousands of unrelated proteins in the database). The addi-

tional, experiment based (in this case NMR) information helps

in the protein structure determination in two ways. First, it

accelerates the prediction due to significant reduction of the con-
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formational space which is being explored. Second, it allows

assessing the obtained protein models and choosing the one

which is the most similar to the native structure.5 In this work

we focus mainly on the first issue, although it is also clearly

shown that the experimental restraints, even of the fuzzy nature,

increase significantly the resolution of the modeled structures.

In the last few years, a number of novel experimental tech-

niques, which provide structural data in relatively short time and

with relatively small effort, have been developed. Namely, two

types of NMR measurements were extensively used in the pro-

tein structure determination: chemical shifts and residual dipolar

couplings.6 In this work we focused on the chemical shifts data

alone, which carry the information about the local conformation

of the main chain backbone.6 Generally, chemical shifts were

used in the protein structure determination only with some addi-

tional sparse experimental data which completed the lack of the

global information about the fold (RDC or NOEs).5,7 Here, we

present the novel method for exploiting the sparse information

from the chemical shifts alone in the framework of de novo

structure determination using restrained folding simulations.

The chemical shifts data was processed with the TALOS pro-

gram8 and the PsiCSI server9 to obtain the constraints appropri-

ate for the Monte Carlo simulations with the CABS algorithm.

As it is shown later, this approach (experiment based and evolu-

tionary) are highly complementary and significantly increase the

precision and the information content of the restraints for the

molecular modeling.

The PsiCSI server for the fast secondary structure prediction

combines the homology based predictions with the experimental

approach. It uses the neural network which is trained on the two

kinds of the input data: the secondary structure derived from the

chemical shifts and the secondary structure based on the profiles

analysis from the PSIPRED server.10 The average accuracy of

this combined approach is about 86%,9 which is significantly

better than in case of using the chemical shifts data or the

PSIPRED alone. It has to be stressed out that a difference of

few percentage points for the accuracy of secondary structure

predictions in the zone of 80–90% is significant, frequently cru-

cial for a proper prediction of the three-dimensional structure.

The TALOS program predicts the most probable values of ’
and  angles for the set of the chemical shifts data. It uses both,

the sequence and the chemical shifts similarity of triplets of resi-

dues of the query protein to the database of the solved structures

and the corresponding chemical shifts. Typically, TALOS pre-

dicts very accurate torsion angles for about 40% of residues, but

this value can be pushed up to about 70% after optimization by

a human expert.11

The main advantage of the chemical shifts is the simplicity

of the required NMR measurements. However, in some cases

(see the Results section), the accuracy of the angular data

derived from the chemical shifts is insufficient for the unambig-

uous determination of the structure.7 What is perhaps more im-

portant, chemical shifts carry only the local (and incomplete) in-

formation about the backbone geometry, thus the structure deter-

mination lacks some global, long-range constraints.6 In the

context of these shortcomings of the chemical shifts data, we

also attend briefly two NMR based methods which could

enhance the chemical shifts based information. These can sup-

plement the chemical shift data. Moreover, they provide some

information on the nature of the global fold. This is not the

main subject of the present work; however, we think that it

could be useful to show how various additional data, when

available, could be easily included into the proposed approach to

the structure determination. The first kind of these additional ex-

perimental data is based on the NMR measurements of three

bond coupling constants, which are widely used in the determi-

nation of different dihedral angles (for example 3JNHH�).
12,13

The second method is based on the long-range distances

between C� atoms and between side chains, which can be

obtained in the experiments based on the nuclear overhauser

effect (NOE). Both of these methods are commonly used in the

protein structure determination but, on the other hand, they are

much more difficult in processing and analyzing than the data

obtained from chemical shifts measurements. It should be, how-

ever, pointed out that in this work we use far less J-couplings

and NOEs (40% in the case of J-couplings and 5% in the case

of NOEs) than it is needed in the NMR based structure determi-

nation (typically, a few NOEs per residue and at least two dif-

ferent J-couplings per residue are needed).12,14 Therefore, such

data could be collected with a smaller effort, sometimes compa-

rable to the cost of the chemical shifts data.

Methods

De Novo Protein Structure Prediction Algorithm

The conformational space of query proteins is sampled using the

recently published simplified lattice model CABS with the Rep-

lica Exchange Monte Carlo (REMC) method (also referred as

the parallel tempering MC).15 The model is based on three cen-

ters of interactions per residue: C� atom, C� atom, and a united

atom which represents a side group of an amino acid (see

Fig. 1). The model force field includes several knowledge-based

potentials, namely protein-like biases, potentials for the short

and long range interactions, and a model of hydrogen bonds.

The details of the force field implementation could be found in

recent publications.15

Experimental Data

Chemical shifts are affected by the local conformation of the

protein backbone.16,17 On the other hand, the local conformation

is coded by the type of the secondary structure and, more pre-

cisely, by the � and  torsion angles. This is why we decided to

use chemical shifts based constraints in the form of the second-

ary structure type (using the PsiCSI server) and the torsion

angles (using the TALOS program). This is also more straight-

forward for the input files for the CABS modeling tool, although

it appears that the translation into the secondary structure code

could be beneficial for other approaches to the protein modeling.

It seems to be evident that such translation eliminates a signifi-

cant fraction of wrong predictions from the NMR data. Of

course, sometimes the data are diffused, though the most con-

temporary tools for the protein structure prediction are less sen-

sible to the inaccuracy of data than to their limited coverage of

the modeled structure.
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Both types of the constraints, the secondary structure type

and the torsion angles, are implemented into the CABS algo-

rithm (see Fig. 2). The additional transformation procedure18

was inevitable for the torsion angles data due to the requirement

of the reduced representation of the protein conformational

space in the CABS model. Namely, to determine � and  angles

one needs coordinates of C�, N and C0 atoms of the backbone,

but the latter two are not explicitly defined in the CABS model.

Therefore, these two torsion angles � and  were transformed

into the corresponding � and � angles between the consecutive

C���C� pseudobond vectors (see Fig. 1). What is very impor-

tant, this transformation procedure does not decrease the accu-

racy of the short range angular data.18,19 Noteworthy, it appears

an almost universal statement that the reduced backbone pseu-

doangles define the local secondary structure much more pre-

cisely than the conventional  -� angles, based on the detailed

backbone coordinates.19

Methods for Improvement of the Chemical Shifts Accuracy

The high accuracy of the constraints in the folding simulations

is crucial for the final results (see the Results section). For this

reason, we also presented two methods for improving the accu-

racy of the chemical shifts data. In the first method presented

later we use additional experimental data to filter the TALOS

prediction and in this way we improve the accuracy of the back-

bone geometry prediction. In the second method, the accuracy

of the chemical shifts based constraints is not changed, but the

additional distance constraints compensate the influence of the

wrong TALOS predictions. The first method is based on the pre-

diction of torsion angles from three-bond coupling constants.

We used the MULDER program20 to determine the possible

ranges of � angle for each 3JNHH� coupling constants (for unam-

biguous determination of the torsion angle more than one type

of the 3J constant is needed12). The obtained ranges were used

to filter out the wrong predictions from the TALOS program.

The final set of torsion angles were then subjected to the trans-

formation procedure and the � and � based constraints were

obtained and implemented into the protein folding simulation.

The second method is based on the NOE-like distance con-

straints which are implemented together with the � and � based

constraints into the folding simulations. The simulated distance

constraints were obtained from PDB structure files of the three

proteins. Generally, about N/7 (N is the length of the protein

sequence) distance constraints are needed for reliable prediction

with the CABS algorithm.1,21 In this case we used only N/12
distance constraints. Both of the presented improvement methods

were applied to four (out of all tested proteins) structures for

which the quality of the final models was the worst with respect

to their size (see Table 2): 1ed7, 1imq, 1a3k, 1g1.
Figure 1. The full atom representation of a protein with marked con-

straints derived from chemical shifts data (a). The reduced representa-

tion of the protein backbone in the CABS model (b). NMR based

constraints defined in a full atom representation (a) had to be con-

verted into corresponding constraints in the CABS model, which are

defined only with the use of the C� trace (b). [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

Figure 2. A simplified flowchart of the implementation of the NMR

based constraints in the protein folding. In the first step, chemical

shifts from BMRB files are used in the prediction of the secondary

structure by the PsiCSI server. The predicted secondary structure is

implemented into the folding algorithm and the extended protein

chain is folded without any additional constraints. In the second

step, the angular constraints are employed. The chemical shift data

from BMRB files are analyzed by the TALOS program and a set of

torsion angles is predicted and converted into the corresponding �

and � pseudoangles. Local, angular constraints are implemented in

the second stage of simulations. The obtained models are subjected

to HCPM procedure and the final models are selected. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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Simulated Chemical Shifts Data

Apart from the experimental data we also tested our approach

on the simulated data, extracted directly from the PDB structure

files. First of all, we wanted to assess if more accurate, chemical

shifts-type based, data improve the prediction. For this reason

we constructed a simple algorithm which extracts the � and �
angles directly from the PDB structure file. The algorithm

mimics the real NMR experiment with typical ranges of the �
and � ambiguities. Only 80% of all � and � angles are extracted,

leaving out data for residues in loops, which are often less accu-

rately defined in the experiment and poorly predicted by the

TALOS program.

Constraints Potentials in the Folding Simulations

The predicted secondary structure, obtained from the PsiCSI

server, was employed into the CABS algorithm in the form of

short-range conformational biases and specific hydrogen bonding

pattern biases. The � and � based constraints, were implemented

in the form of simple linear potentials tested extensively in the

recent work.18

Imposing even soft conformational constraints during the pro-

tein folding simulations may severely handicap sampling of the

conformational space, especially in the case of large and me-

dium-size proteins. The reason is that such local restrictions of

the backbone may block the proper mutual approach and binding

of the secondary structure elements. There is a possibility that

various conformations may be trapped in local energy minima in

which majority of the constraints (which are not accurate) are

satisfied and thus a better conformation, closer to the native one,

may not be reached. The optimal situation would be if the ma-

jority of the constraints were satisfied and global minima in the

CABS force field was reached at the same time. The application

of the parallel tempering Monte Carlo in the CABS model cer-

tainly improves the sampling,22 though it does not guarantee the

final success of the search process.

For this reason we decided to carry out the simulations in

three steps. First, an expanded protein chain was folded only

with the predicted secondary structure. Second, soft angular con-

straints were imposed. Finally, the conformations which were

quite close to the native structure were subjected to the kind of

the refinement simulations, in which strong constraints were

imposed. The last stage should be omitted if the experimental

data is of poor quality.

Three-stage simulations improved the sampling of the confor-

mational space for the majority of the proteins of a medium

size.

However, in the case of larger proteins (more than 100 resi-

dues) we also had to impose a specific, less restrictive potential

of the constraints. This specific potential is a slight modification

of the simple linear potential used in the previous work:18

Ei ¼ "restraints½f ðd�i-d�cut-offÞ
þ ðd�cut-off � d�maxÞ� for d�i . d�cut-off

Ei ¼ "restraintsðd�i � d�maxÞ for d�i . d�max

Ei ¼ 0 for d�i , d�max

Here, �i is either the �i or �i angle, d�i ¼ �i � �real (�i is the cur-

rent value of the � angle, �real is the value of �i extracted from a

PDB file), "restraints is a scaling factor, d�max is a half of the

width of the potential well, d�cut-off is a cut-off value of d�i for
the less restrictive potential, f is a scaling factor for the less re-

strictive potential. The optimized values for the above set of

parameters are as follows: d�max(�) ¼ 108, d�cut-off(�) ¼ 308,
d�max(�) ¼ 208, d�cut-off(�) ¼ 608, f(�) ¼ 0.3, f(�) ¼ 0.24. The

optimization of the parameters was carried out on a small set of

proteins (5mba, 1a3k, 5nll), which includes three SCOP classes

of proteins: �, �, and �/�. We tested different sets of parameters

during the folding simulations and selected the one which pro-

vided the most accurate final model.

The modified potential is far less restrictive especially for the

states which significantly differ from the native conformation.

Namely, values of the potential for � and � angles which greatly

differ from the restraints (more than d�cut-off) are much lower

than in the previous version of the potential—the values are

rescaled by the factor f. Consequently, the � and � based

restraints have minor influence on the protein folding at the be-

ginning of the simulation, when the conformation is still quite

far from the native structure.

The simultaneous application of the parallel tempering, three-

stage simulations, and finally less restrictive potentials turn to be

the most profitable way to sample the conformational space of

the large proteins limited by the local restraints, because in this

case we obtained the final models with the lowest RMSD values

with respect to the native structures.

Selection of the Final Protein Model

All structures obtained in the last stage of simulations were

grouped using a clustering procedure, called the HCPM (hier-

archical clustering of protein models),23 and several clusters of

similar structures were obtained. The HCPM method stands for

a clustering procedure, in the first step of which each structure

forms a separate cluster and in the last step all the structures

belong to a single large cluster. Hierarchical grouping of the

cluster stops at a specific merging distance provided by user. In

this work, the clustering procedure was stopped when at least

five clusters of more than 30 structures were formed (out of sev-

eral hundreds).

In practice, when the native structure is not known, it is diffi-

cult to choose the cluster which includes the model that is the

most similar to the native structure. In some cases, the cluster

selection could be improved with some additional information

from metaservers.1 In the present work, choosing the most popu-

lated cluster from clusters provided by the HCPM seems to be

the method that provides models of acceptable accuracy. For

comparison, we also analyzed the best model observed in simu-

lations (in the sense of the cRMSD measure)—not necessarily

belonging to the most populated cluster. As it is shown in Table

2, in majority of the studied cases the final protein model (from

the most populated cluster) is very similar to or identical with

the best model (the most similar to the native structure).

Noteworthy, in the case of the restrained protein folding,

structures from different clusters are often much closer one to

another (in the sense of the cRMSD measure) than it could be
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observed in the simulations without restraints (data not shown).

It is the consequence of the significant reduction of the confor-

mational space by the restraints. Consequently, the selection of

the best protein model is easier in the protein structure predic-

tion supported by the sparse experimental data.

Results and Discussion

Application to the Experimental Data

For the purpose of this work, we extracted data for C�, C�, H�,
and N chemical shifts from several BMRB (Biological Magnetic

Resonance Bank) entries.24 We selected proteins of different to-

pology and size and with different set of chemical shifts data,

often incomplete (see Tables1 and 2). First, we used chemical

shifts for predicting the secondary structure of the query protein

with the PsiCSI server. The average accuracy of this prediction,

which is the number of residues with the properly predicted sec-

ondary structure (which is in agreement with the DSSP defini-

tion of secondary structure25) divided by the number of all resi-

dues in the protein, for all tested proteins was 84%. Second, the

BMRB files were converted into the TALOS input files and tor-

sion angles were computed. We used the recent version of the

TALOS program with the database of 78 structures26 instead of

the older version which used only 20 high resolution structures.

According to our tests, for the newer version the coverage of the

predicted torsion angles seems to be larger than that for the pre-

vious version of the TALOS.

If we had used the TALOS program in a simple automatic

way we would have obtained torsion angles for about 50–60%

of all residues (for the proteins from our test set, see Table 1).

To transform the TALOS output data into the constraints used in

the reduced model, we need two consecutive pairs of � and  
angles for one � angle and the corresponding pair of � angles.

There are many breaks in the TALOS prediction, and so the

actual coverage of the � and � pseudoangles data obtained by

our method would be only 40–50%. That is because a sequential

pair of � and  angles is needed for the single � angle determi-

nation.18 An additional comment is needed for the transforma-

tion of � and  into � angle. The coverage of the � angle should

be the same as the coverage of pairs of � and  obtained by the

TALOS. However, our method does not take into consideration

the distinct conformation of the proline amino acids. Hence, we

reject all pairs of � and  for the proline residues during the

transformation into � angles. The reason for such choice is that

proline amino acids are rare in proteins and a detailed recon-

struction of the backbone is not the aim of this work. Though,

in the future implementation of our pipeline the angular data for

proline residues could be certainly added.

Such limited set of � and � based constraints from the auto-

matic TALOS prediction turned out to be insufficient for a good

structure prediction with our method. For proper identification of

the best protein model we need at least 60% of � angles and

70% of � angles defined (it corresponds to at least 70% of � and

 angles). Therefore, we had to optimize the prediction from the

TALOS to obtain a larger set of data (with coverage 70–80%

for our test proteins, see Table 1). We optimized the TALOS

prediction by adding to the default predictions several pairs of �
and  angles for which at least 7 out of 10 database matches

were in the same high-populated region of the Ramachandran

map (for the TALOS default prediction it should be at least 9

from 10 matches converged). There were very few predictions,

which could be described as completely wrong and most of the

predicted angles felt in the range of 6208 (� angles) and 6108
(� angles) for all tested proteins (see results in Table 1). It

appears to be an important observation for experimentally sup-

ported protein modeling in general.

As it is presented in the Table 2 (see also Fig. 3), final

results of the folding simulations correlate with the accuracy and

the coverage of the angular constraints. The accuracy and the

coverage of the � and � constraints are defined as follows:

ACC ¼ Ngood=Nall

COVð�Þ ¼ Nall=ðNRES � 2Þ
COVð�Þ ¼ Nall=ðNRES � 3Þ

Here, ACC is the accuracy of the prediction of either � or �
angles, Ngood is the number of good predictions (6208 for � and

6108 for �), Nall is the number of all predictions, COV(�) is the

Table 1. Summary of Experimental Data and TALOS Predictions.

PDB id Length

Number

of chemical

shifts

Coverage of �

and  obtained

automatically

from TALOS (%)

Accuracy of the

automatic TALOS

prediction of

� and  (%)

Coverage of �

and  from

optimized TALOS

prediction (%)

Accuracy of

the optimized

TALOS prediction

of � and  (%)

1ed7 45 79 44 58 73 52

2gb1 56 109 68 66 80 67

1bw5 66 250 65 77 82 72

1tiz 67 320 79 84 85 82

1ubq 76 374 66 97 79 97

4icb 76 373 75 96 83 94

1imq 86 325 53 72 81 65

1gm1 94 411 48 74 67 72

1a3k 137 530 54 84 72 81
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coverage of the � predictions, COV(�) is the coverage of the �
predictions, NRES is the number of all residues in a protein. The

influence of the coverage of the angular data is clearly visible in

the cases of the 1imq and 1gm1 proteins, both of comparable

size. For the 1gm1 protein we obtained smaller set of restraints

than for the 1imq, what affected the results of the folding simu-

lations. The influence of the accuracy could be seen from

inspection of the final models for 1imq and 4icb proteins, for

which the coverage of the data was similar. The quality of the

final model of 1imq (measured by cRMSD from the crystallo-

graphic structure) was significantly worse than in the 4icb case.

Moreover, the fraction of the completely wrong constraints is

also important. For example, the 1bw5 and 1tiz protein struc-

tures, both of the same SCOP class, with the similar coverage of

Figure 3. The results of the folding simulations with the PsiCSI predicted secondary structure and the

local angular constraints. The native structures, which are colored blue, are superimposed on the pre-

dicted models (red). Models correspond to the centroids of the best clusters of the obtained structures

(in the sense of the cRMSD from native). The model for the (a) 1ed7 protein, (b) 2gb1, (c) 1bw5, (d)

1tiz), (e) 1ubq, (f) 4icb, (g) 1imq, (h) 1gm1, (i) 1a3k. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Table 2. Summary of the Restraints and Accuracy of the CABS Models.

PDB id Length SCOP class

The pseudoangles data used as the restraints

Results of the simulations

Coverage

(%) Accuracy (%)

Completely wrong

restraints (%)

� � � (<108)a � (<208) � (>308)b � (>608) cRMSDc (Å) cRMSDd (Å)

1ed7 45 � 71 56 75 44 0 24 3.4 3.4

2gb1 56 � þ � 80 64 82 58 4 14 2.4 2.4

1bw5 66 � 80 68 80 71 13 16 7.2 4.7

1tiz 67 � 85 78 82 86 0 2 3.2 2.9

1ubq 76 � þ � 75 63 86 94 4 1 3.7 2.8

4icb 76 � 80 71 90 87 0 2 4.1 4.0

1imq 86 � 79 66 82 65 1 19 9.9 7.6

1gm1 94 � 67 50 81 62 2 19 10.4 10.4

1a3k 137 � 67 53 73 67 1 12 11.6 11.6

aThe accurate � angle differs from the real data, extracted from the PDB structure file, by at most 108 (in the case

of the � angle, by at most 208).
bThe totally wrong prediction of the � angle means that it differs from the real data, extracted from the PDB struc-

ture file, by at least 308 (in the case of the � angle, by at least 608). Such error ranges resemble differences between

� and � angles typical for helices and beta sheets, respectively.
cThe model from the most populated cluster of the structures.
dThe model from the cluster of the structures, which is the most similar to the native structure.
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the data and nearly the same size, were predicted with different

resolution, because the fraction of wrong constraints was signifi-

cantly larger for the 1bw5 protein.

The quality of the final protein model depends also on the

length of the protein sequence. In general, small protein struc-

tures are more accurately predicted. We did not observe signifi-

cant influence of the type of the protein secondary structure on

the final results, but increasing the number of loops and irregular

fragments of the backbone hampered the TALOS prediction and

consequently the final results also.

The most similar to the native structures were models of pro-

teins of small and medium size (1tiz, 1ubq, 4icb), for which the

coverage of � and � angular constraints reaches about 70–80%,

the accuracy is at least 80% and there is no or nearly no false

constraints. In the cases of two small proteins 1ed7 and 2gb1,

despite the fact that the accuracy is low, final models are still

close to the native structures. It is worth to notice that for the

1ed7 protein we did not have any carbon chemical shifts. Conse-

quently, the accuracy of the TALOS prediction was extremely

poor. Despite this, we obtained the model in which the overall

location of the secondary structure elements is the proper one

(especially for the central �-hairpin). Slight distortions are

located only in the loops. It seems obvious that for small pro-

teins the angular constraints could be less accurate than in the

case of large proteins.

The only protein model with the high cRMSD value, despite

the high accuracy of the TALOS prediction, is the model of the

1bw5 protein. Both the C-terminus and the N-terminus frag-

ments of the protein are ambiguously determined by NMR data

(see the 50 NMR structures of the 1bw5 deposited in PDB).27

Therefore, instead of the cRMSD of the whole protein model,

we should take into consideration only the helical core (residues

from 12 to 55). Then, the cRMSD of the best model is only

2.7 Å.

For the larger and structurally more complex proteins (1imq,

1gm1, 1a3k) the accuracy of the TALOS prediction is not suffi-

cient for an acceptable structure prediction. We carried out some

tests for the 1imq protein to prove the influence of the accuracy

of the data on final results. It turned out that increase in the

number of the correct constraints by about 10% leads to

decrease of the best model cRMSD from 7.6 to 5.5 Å.

The average running time of the folding simulations for the

protein 2gb1 was 1 day. The time of the restrained folding simu-

lations scales linearly with the number of residues in a protein.

Improvement of the Accuracy of the Experimental Data

The accuracy of the chemical shifts based constraints was not

sufficient for the prediction of the three-dimensional structure of

two out of all tested proteins (1a3k and 1gm1). We obtained

protein models quite far from the native structures (10–11 Å). In

the other two cases (1ed7 and 1imq) the quality of the final

models is better (correct overall topology of the fold) but still

not satisfactory. For these four proteins we applied two methods

to improve the quality of the final models. The first method,

applied to the 1ed7 protein, is based on the prediction of torsion

angles from three-bond coupling constants. In this case we had

only 36 3JNHH� constants available. The ranges for the � angle

values from the MULDER program improved the accuracy of

the constraints by a few percentage points. The cRMSD of the

best model of the protein structure improved from 3.7 to 2.9 Å.

The second method, based on the NOE-like distance constraints,

is applied to three proteins (1imq, 1a3k, and 1gm1). Folding

simulations with only N/12 distance constraints superimposed on

the contact of the side groups and the chemical shifts based con-

straints improved significantly the quality of the best models for

all proteins (see Table3). The methods for improving the accu-

racy of the chemical shifts data, which were presented in this

section, are promising, although some further research on a

larger set of protein structures should be carried out. Again, here

we focus on the application of the chemical shifts data alone

in the protein structure determination. The main factor behind

performing the additional simulations with supplementary ex-

perimental data is to illustrate the open character of the proposed

methodology for the sparse data supported structure determi-

nation.

Table 3. Summary of Simulations with Chemical Shifts Based

Constraints and Sparse Distance Constraints.

PDB id Length

Number of

distance constraints

cRMSDa

(Å)

cRMSDb

(Å)

1imq 86 6 5.4 5.4

1gm1 94 7 11.7 8.9

1a3k 137 10 4.5 4.5

aThe model from the most populated cluster of the structures.
bThe model from the best cluster of the structures, which is the most

similar to the native structure.

Figure 4. (a) Superimposition of the native structure (blue) and the

model from the cluster most similar to the native structure (red) for

the T0215 target (PDB id: 1 � 9b) protein and for the T0230 target

(PDB id: 1wcj) (b). T0215 is 53 residues long and T0230 is 102 res-

idues long. We used 223 chemical shifts to obtain angular con-

straints for the T0215 and 486 for the T0230. Accuracy of the �

angles prediction is 74% for T0215 and 52% for T0230. The �
angles were predicted with the accuracy 58% (T0215) and 38%

(T0230). The cRMSD is 1.9 Å for the T0215 model and 4.5 Å for

the T0230 model. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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Application to the CASP6 Fold-Recognition-Analogy

Targets

We have tested our approach in post-predictions of structures of

two targets from the CASP6 experiment. The target proteins

were classified in the fold-recognition-analogy category, mean-

ing that there are no close homologues structures in the PDB

database. This is the case in which sparse experimental data

could be very helpful. Both protein structures for the target

T0215 and T0230 were modeled with a high accuracy (see

Fig. 4) using the method proposed in this work. What is more

important, all clusters of structures obtained in the simulations

were very similar (the cRMSD values for all pairs of the clus-

ter’s centroids did not exceed 1 Å). In such cases the selection

of the best model from the simulation trajectory via hierarchical

clustering could be omitted, thereby reducing computational cost

of the structure determination process.

Obtained in this work models of T0215 and T0230 are quali-

tatively more accurate than the best models presented during

the CASP6 (see the summary of the experiment on the CASP6

web site: http://predictioncenter/CASP6/org), where the most

advanced methods for structure prediction were evaluated. The

secondary structure prediction by PSIPRED done for the purpose

of this work was almost identical with the predictions available

during the CASP6 (with older protein database). Moreover, the

folding was done without any restraints from possible homolo-

gous (or analogous) templates. Thus, the observed qualitative

improvement of the accuracy of the T0215 and T0230 models is

highly significant.

Simulated Constraints

Chemical shifts are the relatively effortless way to obtain local,

angular data which could be useful in the protein structure pre-

diction. However, it is worth noticing that the method employed

in this work could give much better results if the experimental

data of dihedral angles was more accurate.18 As it can be seen

in Table4, 80% of � and � angles as the local constraints is

enough for reasonable predictions of all tested proteins with an

acceptable resolution. A comment is needed at this point. Why

in these cases we did not need any global information about the

fold even for the larger proteins? The answer is that when the

angular, local constraints are very accurate the CABS force field

is good enough to assembly the secondary structure elements in

the proper mutual orientation and native-like registration of the

side chains’ interactions.

Conclusions

It has been shown that such limited experimental data as chemi-

cal shifts are sufficient for determination of three-dimensional

structures of proteins as long as the accuracy of the data is satis-

factory. The required accuracy of data is higher for larger pro-

teins than for small proteins with not too many structural build-

ing blocks. In the case of poor quality chemical shifts data, the

structure prediction could be improved by application of addi-

tional, sparse experimental data of different kinds. The method

presented in this work has been tested for globular proteins with

the sequence length below 150 amino acids. For proteins with

more than 150 residues employing some global, distance, or ori-

entational constraints could be inevitable for the proper predic-

tion. The long range goal of this line of work is to provide a

versatile method for protein structure determination from sparse

experimental data that are easy to obtain rapidly, using very lim-

ited experimental resources. Applications to the chemical shifts

data described here are the first step to achieve this goal.

Finally, it should be pointed out that the reduced �-carbon trace

representation of the CABS protein models is consistent with the

all atom representation of the main chain and that the atomic

details of the backbone could be easily reconstructed,27,28 mak-

ing the obtained models more useful.
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2gb1 56 � þ � 1.3 1.3

1ubq 76 � þ � 4.5 3.3

5nll 138 �/� 4.3 3.7

4icb 76 � 3.3 3.3

2spz 58 � 4.8 3.6

1bw5 66 � 4.2 3.8

1imq 86 � 3.8 3.8

5mba 146 � 14.7 8.7

1tiz 67 � 2.8 2.8

1gm1 94 � 8.4 7.4

1ed7 45 � 1.9 1.9

2pcy 99 � 3.7 3.7

1a3k 137 � 5.9 5.8

aThe model from the most populated cluster of the structures.
bThe model from the best cluster of the structures, which is the most

similar to the native structure.

1675Protein Structure Prediction: Combining De Novo Modeling with Sparse Experimental Data

Journal of Computational Chemistry DOI 10.1002/jcc



12. Schmidt, J. M.; Blumel, M.; Lohr, F.; Ruterjans, H. J Biomol NMR

1999, 14, 1.

13. Malliavin, T. E. Curr Org Chem 2006, 10, 555.

14. Liu, G.; Shen, Y.; Atreya, H. S.; Parish, D.; Shao, Y.; Sukumaran,

D. K.; Xiao, R.; Yee, A.; Lemak, A.; Bhattacharya, A.; Acton, T.

A.; Arrowsmith, C. H.; Montelione, G. T.; Szyperski, T. Proc Natl

Acad Sci USA 2005, 102, 10487.

15. Kolinski, A. Acta Biochim Pol 2004, 51, 349.

16. Spera, S.; Bax, A. J Am Chem Soc 1991, 113, 5490.

17. Wishart, D. S.; Sykes, B. D.; Richards, F. M. J Mol Biol 1991, 222,

311.

18. Plewczynska, D.; Kolinski, A. Macromol Theory Simul 2005, 14,

444.

19. Oldfield, T. J.; Hubbard, R. E. Proteins 1994, 18, 324.

20. Padrta, P.; Sklenar, V. J Biomol NMR 2002, 24, 339.

21. Kolinski, A.; Betancourt, M. R.; Kihara, D.; Rotkiewicz, P.; Skol-

nick, J. Proteins 2001, 44, 133.

22. Earl, D. J.; Deem, M. W. Phys Chem Chem Phys 2005, 7, 3910.

23. Gront, D.; Kolinski, A. Bioinformatics 2005, 21, 3179.

24. Seavey, B. R.; Farr, E. A.; Westler, W. M.; Markley, J. L. J Biomol

NMR 1991, 1, 217.

25. Kabsch, W.; Sander, C. Biopolymers 1983, 22, 2577.

26. http://spin.niddk.nih.gov/NMRPipe/talos/.

27. Ippel, H.; Larsson, G.; Behravan, G.; Zdunek, J.; Lundqvist, M.;

Schleucher, J.; Lycksell, P. O.; Wijmenga, S. J Mol Biol 1999, 288,

689.

28. Feig, M.; Rotkiewicz, P.; Kolinski, A.; Skolnick, J.; Brooks, C. L.,

3rd. Proteins 2000, 41, 86.

1676 Latek, Ekonomiuk, and Kolinski • Vol. 28, No. 10 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc


