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ABSTRACT

Motivation: The number of known protein sequences is about

thousand times larger than the number of experimentally solved 3D

structures. For more than half of the protein sequences a close or

distant structural analog could be identified. The key starting point in

a classical comparative modeling is to generate the best possible

sequence alignment with a template or templates. With decreasing

sequence similarity, the number of errors in the alignments increases

and these errors are the main causes of the decreasing accuracy of

the molecular models generated. Here we propose a new approach

to comparative modeling, which does not require the implicit

alignment — the model building phase explores geometric, evolu-

tionary and physical properties of a template (or templates).

Results: The proposed method requires prior identification of a

template, although the initial sequence alignment is ignored. The

model is built using a very efficient reduced representation search

engine CABS to find the best possible superposition of the query

protein onto the template represented as a 3D multi-featured

scaffold. The criteria used include: sequence similarity, predicted

secondary structure consistency, local geometric features and

hydrophobicity profile. For more difficult cases, the new method

qualitatively outperforms existing schemes of comparative modeling.

The algorithm unifies de novomodeling, 3D threading and sequence-

based methods. The main idea is general and could be easily

combined with other efficient modeling tools as Rosetta, UNRES

and others.

Contact: dgront@chem.uw.edu.pl

1 INTRODUCTION

Comparative modeling remains the best established and the
most powerful method for theoretical prediction of protein

structures. Classical approach starts from sequence alignments
of a query protein with sequences of template proteins for

which their structures have been already solved experimentally
(Tramontano, 2003). Instead of a straightforward sequence
approaches various threading procedures (Lathrop and

Smith, 1996; Madej et al., 1995) could also be applied, which
is important for distantly homologous or analogous templates.

The templates could then be used to build a consensus scaffold,
which then needs to be ‘decorated’ with loops and other

ambiguous fragment of the target putative structure.

Alternatively, a set of distance restraints could be read from

the templates and a consensus model could be built by means of

a best possible satisfaction of these restraints. Such approach is

extremely successful in Modeller (Sali and Blundell, 1993),

which employs sophisticated distance geometry and various

procedures for loop modeling. Another class of tools employing

distance restraints are based on stochastic search of query

protein conformational space guided by the restraints from

templates. Typical examples are CABS (Kolinski, 2004) and

Rosetta (Rohl et al.., 2004). These two modeling tools have

proven to be very successful during the CASP experiments

(Kolinski and Bujnicki, 2005). What is important, these

stochastic search methods are applicable to comparative

modeling as well as to de novo (template free) prediction of

not too complex structures. Other reduced representation

modeling tools as TASSER (Zhang et al., 2005) and UNRES

(Liwo et al., 1997, 2005) also rely on complex strategies of

conformational search. With increasing evolutionary distance

(and consequently with decreasing sequence similarity), the

sequence alignments and the threading-based (although to a

somewhat lesser extent) alignments become more and more

ambiguous. The errors are of a various nature, frequently

making the subsequent molecular modeling very difficult or

impossible (Marti-Renom et al., 2000). The problem is that all

the alignment techniques ignore various geometric limitations.

Suppose that there is a gap in the alignment of the query

sequence and the flanking residues in the template are separated

by a larger distance than the length of a single peptide bond.

In such situations, the straightforward connection of the

template fragments is not feasible and the alignment needs to

be adjusted somehow. A number of problems of such type arise

with gapped alignments.

The new method proposed here avoids these alignment

problems. The modeling is done directly onto a multi-featured

scaffold and the protein target chain maintains its connectivity

and protein-like geometry during the modeling procedure.

The protein-like behavior is achieved due to the generic

knowledge-based force field of the CABS (Kolinski, 2004)

model. A template needs to be identified prior to the modeling.

It could be done in various ways, including purely biological

considerations. There is no need for the initial template-target

alignment — it does not enter in any way into the input data.

The multi-featured scaffold is built in the following fashion.

First, the template reduced to the alpha-carbon trace is

projected onto a fine 3D grid. Then, a set of selected properties*To whom correspondence should be addressed.
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is assigned to the nodes of the grid that are in proximities
of particular alpha carbons of the template. These properties

include: amino acid identity, assigned secondary structure

(in the three letter code), amino acid hydrophobicity (the Kyte–

Doolittle scale is used) and the local direction of the template

coded by the alpha carbon–alpha carbon virtual bonds, using

a discreet set of vectors. Obviously, other features of proteins

could be used, although we found the above selection to be

satisfactory. Also multiple templates could be used, provided
a sensible structural alignment of these templates can be

generated — the scaffolds need to be consistently oriented for

the subsequent simulations. Here, for the sake of simplicity and

clarity we limit ourselves to the single template case.
The conformational search on the template scaffolds is done

by means of the Replica Exchange Monte Carlo (REMC)

sampling (Geyer, 1991; Gront et al., 2000; Hansmann, 1997).

The sampling is controlled by the CABS force field and guided

by a scoring function describing the fit of the target structures

to the template.

2 METHODS

2.1 Definition of the multi-featured template scaffold

The alpha-carbon trace of the template chain is projected onto a fine

lattice grid with the spacing of 0.61 Å and placed in the center of

the Cartesian coordinate system. This is consistent with the CABS

(Kolinski, 2004) representation, although different projections can be

used, especially when alternative search engines are employed during

the modeling phase. Then, to every point of the grid various features

of the template are assigned, using two distinct cutoff distances.

The secondary structure assignment (in the three-letter code: alpha,

beta and coil) is done with 2.5 Å cutoff. This means that the grid points

closest to an alpha carbon position and in the cutoff distance have

assigned the secondary structure of the template’s residue. Then, the

separate arrays are used to store the template’s residues identities

and the local direction of the chain. Residues’ identities are used to

define the fitness of the sequences (according to a substitution matrix —

BLOSUM62 has been used in the test presented in this work).

Additionally, a hydrophobicity scale is used to smooth-out the

alignment scoring landscape. We employed the Kyte–Doolittle scale

(Kyte and Doolittle, 1982), because it appears to be a good consensus

for the definition of the amino acids’ hydrophobic properties. The same

4.0 Å cutoff is used for the spatial coding of these three properties of

a template. The values of the cutoff distances were carefully adjusted

using different targets, although we found out that the algorithm is not

too sensitive to particular choices. It seems to be quite clear that the

scaffold’s role is to guide the topology assembly and perhaps to

regularize a bit the secondary structure in the protein’s core. The fine

details of the target structure are defined by the CABS force field.

Again, other search engines [Rosetta (Rohl et al., 2004), UNRES (Liwo

et al., 1997), TASSER (Zhang et al., 2005)] can probably do an equally

good job. Figure 1 explains in a schematic fashion the idea of the

template scaffold.

2.2 Starting conformations of the target

In principle, there are three various ways to initiate the modeling. First,

one can start from just a collection (replicas for REMC) of random

coil chains, roughly imposed onto the template grid. This is the most

straightforward, although rather expensive computational strategy.

The chains need to adjust their orientation in respect to the template

and fold into the proper structure. For complex folds it may take quite

a time. Obviously, the cost of computations depends also on the quality

(proximity to the target) of the template. A different way to generate the

starting replicas is to take chains excised from the template in form

of continuous fragments (with random starting points) supplemented

with random tails at the N- or C-terminus, when necessary. This is

a better strategy than the first one, since for particular replicas some

fragments of the starting chains could be similar to the target structure.

Computationally, the most effective is to build the starting models using

other fast and easy to use modeling procedures (Metaservers). Then,

the crude models needs to be structurally aligned onto the template

scaffold. Even very crude models usually contain topologically correct

structural fragments, what facilitates very fast convergence to the

optimal structure of the target. In this work, we tested all three

strategies and the final results were identical (in a range of statistical

errors of the CABS representation), although significant differences in

the computational costs were systematically observed.

2.3 Target to template fitness function

The scoring function for the REMC sampling consists of two parts.

The first one is the generic force field of the CABS model. The CABS

model has been described previously in detail (Kolinski, 2004), and used

in various applications to protein structure prediction and study of

protein dynamics (Kmiecik and Kolinski, 2007; Kmiecik et al., 2006)

and thermodynamics (Gront and Kolinski, 2007a,b). Just for com-

pleteness, let us mention that the CABS interaction scheme contains

a set of knowledge-based potentials derived from statistical analysis

of the regularities seen in known protein structures. The potentials

describe the short range conformational propensities, the context-

dependent interactions between side groups, a model of excluded

volume and a model of the main-chain hydrogen bonds network. The

R=4Å

R=2.5Å
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Fig. 1. Schematic illustration of the idea of a multi-featured scaffold for

de novo comparative modeling of protein structures. The thick solid line

represents the C�-trace of a template. The spheres show the cutoff areas

for comparison of various features of the template and the target.

The ‘running’ target C�-trace is shown in the thick dotted line. The

two small open circles correspond to the alpha carbons being the

reference centers for identification of the local properties of both

structures: A — amino acid identity, SS — secondary structure

(assignment for the template, and prediction for the target, respectively)

and W — the local directions of the chains (see the text for more

details).

Comparative modeling

2523

 at U
niw

ersytet W
arszaw

ski B
iblioteka U

niw
ersytecka on June 22, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


second part of the scoring function quantifies the fitting of the modeled

chain to the multi-featured template scaffolds (see Fig. 1). There are

four components of this part of the score, outlined below.

2.3.1 A substitution matrix based scoring We employed the

BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992). It is

implemented in a very simple way. When the glycine alpha carbon of

the wiggling chain, representing the target protein, visits the 4 Å vicinity

of a glycine of the template scaffold the score increases by 6, in the case

of alanines imposed onto the glycine vicinity the score is 0, for serine

it is equal to �3, etc. For not aligned residues the score is equal to �4,

which corresponds to the minimal value of the substitution matrix’s

elements. Obviously, the problem of the gap penalty is irrelevant since

the modeled chain maintains its connectivity.

2.3.2 Hydrophobicity fitness The Kyte–Doolittle scale is used

(Kyte and Doolittle, 1982). The score for a single residue is equal to

maxð0,KDtemplate �KDtargetÞ.. Thus, for the ALA–ALA alignment the

score is equal to 1:8� 1:8, for HIS–HIS it is �3:2��3:2, while for

HIS–ALA pairing it is equal to 0. The ignoring of the negative products

prevents a non-physical expansion of the model chains in cases of highly

unfavorable local superimpositions. The distance cutoff is the same as

in the previous case of the substitution matrix based scoring.

2.3.3 Local orientation of the template and the target
chains The scoring is based on the dot products of the corresponding

C�–C� virtual vectors. When they are directed in the same direction

(product >0) the score is equal to 1, otherwise it is equal to 0. This

criterion applies only to the pairs of residues having the same regular

secondary structure (a helix or a strand) assignment (for the template)

or prediction (for the target). The distance cutoff for the corresponding

alpha carbons is again equal to 4 Å.

2.3.4 Secondary structure complementarities The alignment of

a pair of residues having the same secondary structure (a helix, or a

strand) is additionally awarded with the score equal to 1. In this case the

cutoff distance was set to be equal to 2.5 Å. A smaller cutoff for this

component of the scoring function facilitates more exact superimposi-

tions of the regular secondary structure elements, presumably building

a more conserved protein core.

2.4 Model building procedure

The total score is a linear combination of the above four sub-

components. The two first are taken with a weight equal to 0.25, while

the weight factor for the two remaining components are equal to 1. The

weighting is arbitrary, although carefully adjusted by a trial and error

procedure. Fortunately, the method is not sensitive to even significant

variation of the weighting scheme. Taken with the minus (�) sign, the

target to template fitness scoring is added to the CABS energy, and used

together to control the REMC sampling. Total 10–20 replicas were

used with the temperatures equally distributed around the estimated

collapse transition temperatures for the CABS models of the target

chains. Couple of thousands of snapshots from the simulations was

subject to a hierarchical clustering procedure (Gront and Kolinski,

2005). For the cluster centroids, the atomic details were reconstructed

(Gront et al., 2007) and the resulting structures were briefly energy

minimized using an all-atom force field with an implicit solvent. The

lowest energy structure of the target was taken as a final result. The

details of such multiscale approach to the fold evaluation and selection

could be found elsewhere (Kmiecik et al., 2007). Since the results of the

CABS simulations for the method presented here are very consistent,

the clustering and the minimization play a marginal role — the

improvements of the generated structures are usually incremental.

3 EXAMPLE RESULTS AND DISCUSSION

Three example systems represent various levels of difficulty for

comparative modeling procedures. The systems are character-

ized in Table 1. A classical modeling was also performed for

these systems. To make the test as difficult as possible, the

alignments for the classical modeling using Modeller (Sali and

Blundell, 1993) were optimized. The best possible alignments

(leading to the lowest possible errors of the structural alignment

of the targets and templates) were generated running the

alignment program with a wide range of parameters. The

following procedure was applied to build the best possible

models:
At the first step, we calculated an optimal profile-to-profile

alignment for a given target/template pair. For this purpose, we

used PRAline tool from BioShell (Gront and Kolinski, 2006)

package. During optimization, we were varying gap opening/

continuation penalties and profile–profile scoring system. We

tried all combinations of the four features: gap opening penalty

(from �11.0 to �3.0 with step �1.0), gap continuation penalty

(from �0.1 to �2.0 with step �0.1), profile–profile similarity

scoring system: [dot-product, outer-product, COMPASS

(Sadreyev and Grishin, 2003)] and alignment method (global

or local). To calculate the outer products of two profile

columns, we used BLOSUM62 matrix (Henikoff and Henikoff,

1992). Then we employed Modeller ver. 9.1 to build models

from the best alignments. The best alignments are very close to

the structural alignments (due to the optimization procedures).

Thus, models very close to the best possible models are built.

Each model was optimized in all-atom CHARMM force field

(Brooks et al., 1983). We tried also several methods of loops

refinement that are implemented in Modeller, but in all cases

the results were worse that without loops remodeling. In all

cases, significantly better models were obtained with the

method proposed in the present work. The results are

summarized in Table 1. Other classical methods of comparative

modeling lead to significantly worse models than these obtained

with Modeller. Very interesting is the case of protein

G modeling using 1ubq as a template. For this system,

Table 1. Summary of the modeled systems

Target/Template 2gb1/1ubq 2pcy/1paz 2pcy/2azaA

Target length 56 99 99

Template length 76 123 129

Optimization for classical modeling

method DP1 OPg DPg

Gap penalty 11 5 6

Gap extension 1.5 0.2 0.4

Classical modeling cRMSD 8.20 Å 3.51 Å 5.81 Å

This method cRMSD

via clustering 1.67 Å 2.86 Å 3.44 Å

the best structure observed 1.37 Å 2.55 Å 3.19 Å

Optimization for classical modeling: rows describe the parameters that resulted

in the structurally optimal alignment: DPl¼dot-product scoring with local

alignment, OPg¼ outer-product global alignment, DPg dot-product global

alignment. (Detailed definition of profile–profile scoring may be found in

(Wang and Dunbrack, 2004.)
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the sequence similarity between the target and template is at a

random level, although some threading programs can identify

possible remote structural similarity, though the obtained

alignments lead to very bad models, barely resembling

the target topology (but not its secondary structure). Yet the

present method leads to a very good model. It builds on

the structural similarity, and hydrophobic pattern similarity

of the N-terminal fragment consisting of a helix and a

�-hairpin. This fragment could be structurally aligned with a

high fidelity. This fragment of the model is even better than the

model resulting from the structural alignment. For the fairness,

it should be mentioned that the 2gb1 domain can be folded by

CABS in a pure de novo fashion. Such de novo simulations

produce a number of alternative conformations, including the

topological mirror image structures. Sophisticated model

selection procedures are needed to select the proper fold from

de novo trajectories. On contrary, the comparative modeling by

the present method produces only the near-native structures,

and the model selection procedures are used only to select the

best model from the set of good models. In Figure 2 the

modeled structures are compared with the native structures of

the targets. The method proposed here has some features of our

earlier methods for improvement of threading-based models.

For example, the GeneComp algorithm (Kolinski et al., 2001)

is based on a de novomodeling of a target using a ‘tube’ scaffold

built on a template. The present method goes much further, and

unifies a true 3D threading with de novo modeling. It is easy to

see that the idea of the multi-featured template scaffold is

general and can be (with possible modifications of the grid,

properties coded in the scaffold, etc.) combined with other

efficient conformational search tools as Rosetta (Rohl et al.,

2004), UNRES (Liwo et al., 1997, 2005), SICHO (Kolinski and

Skolnick, 1998) or TASSER (Zhang et al., 2005) — a close

relative of CABS. Very importantly, the proposed method does

2g
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Template structure Modeller result CABS model Native structure

Fig. 2. Ribbon drawings of the example models. Top row: 2gb1 modeled on1ubq as template, middle row: 2pcy modeled on 1paz and bottom row:

2pcy on 2azaA. First column: the template structures. Second column: models obtained with Modeller. Third column: structures from the present

method and Fourth column: native structures.
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not need a starting sequence alignment. Consequently, one can

focus just on the best template identification, disregarding the

quality of the global alignment. ‘Partial’ templates could be also

used. As a result, the fraction of proteins for which good

molecular models could be predicted in silico (in an automated

fashion) increases significantly. What is very important the

obtained models are much better than the templates used — the

models are much closer to the target structures, regardless of

the alignment used. This is illustrated in Figure 3, where the

distances from the target and template structures of the longest

continuous segments of the models are plotted as a function of

the segment length. Here, only three representative examples

are shown for an illustration of the essence of the discovery.

A massive benchmark using this method and other methods of
protein structure prediction is now underway. We hope that the
multi-featured template scaffold idea finds its applications in

other labs using different modeling tools.
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