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SOME PROPERTIES OF RIGID CORES WITH FLEXIBLE TAILS.
MONTE CARLO SIMULATION OF TWO-DIMENSIONAL LATTICE SYSTEMS
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The combinatonal entropy of two-dimensional triangular latuce systems consisting of ngid cores with flexible tails was
calculated by means of the Monte Carlo method. Large differences between the mean-field predicuon and Monte Carlo data
were observed Systems of molecules with sufficiently long core undergo a first-order phase transiion at high density

1. Introduction phases. It was shown that differences between steric
packing of the cores and semiflexible tails can produce

Lattice models are particularly useful for qualita- stable, anisotropic phases. The model reproduced semi-

tive understanding of the structure of dense polymeric quantitatively some experimental trends (for example

systems [1,2] and have also been used for the theory the tail length effect of the phase transition).

of liquid crystals [3]. A large number of short-chain The present paper describes Monte Carlo simula-

polymers composed of a rigid rodlike central part and tions of two-dimensional athermal lattice systems

two flexible tails can form stable ordered phases (see composed of rigid cores with completely flexible tails.

for example ref. {4]). This kind of system has been The main purpose is to provide numerical data for

the subject of several theoretical studies based on testing vartous mean-field approximations (at least in

lattice mean-field statistics. Agren and Martire [5] ap- the isotropic range), to demonstrate the possibility of

plied DiMarzio [6] statistics to a model lattice system spontaneous ordering of the system and to study the

of hard cores with semiflexible tails (hindered rota- interplay of short- and long-range ordering effects.

tion). They obtained relatively large changes in densi-
ty as well as changes in the core order parameter at

the isotropic—nernatic transition. Some features of 2. The Monte Carlo model
their model led to the result that, in the nematic
phase, almost all of the tails are in a fully extended The model molecule is composed of r segments of
conformation. Dowell and Martire [7] studied the rigid core,r — 1 rigid bonds, and two f-segment tails.
lattice system of rigid cores and completely flexible Thus a single molecule occupies n = r + 2f sites on the
pendant taiis. In their model, the density changes and triangular lattice (coordination number z = 6). Avail-
core order parameters obtained at the transition were able orientations of molecule segments are the follow-
more realistic, but still greater than the experimental ing: £[1,0],[1/2,31/2/2],and %[1/2, 31/2/2]. Mole-
values. They found a small but non-zero order param- cules are placed in a periodical Monte Carlo box in the
eter for tail segments, decreasing with increase of the form of a thombus of side L. The model is steric and
tail length. Recently Dowell [8,9] proposed lattice athermal (hard site—site repulsions). Hence the volume
statistics for the smectic-A and reentrant-nematic fraction of V n-mers in the system is equal to ¢ =
Nn/L2. The Monte Carlo process we employed equi-
! Present address- Department of Chemustry, Washington Um- Librates the system configuration by means of itera-
versity, St Louts, MO 63130, USA. tive modification of single molecular position and/or
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conformation. Simultaneously the probability of in-
sertion of one more molecule into the system in equi-
librium was estimated. This is a procedure similar o
those proposed by Bellemans and de Vos [10] and ap-
plied by other authors (see for example refs. [11,12])
to lattice systems of flexible pelymers.

All the simulations were made for 15-mer mole-
cules with various rigid core lengths r =2 (completely
flexible chain),r =5, 7,9 and 11. The Monte Carlo
box contained L X L = 900 sites. The effect of box size
was tested. It was found to be negligible in the isotrop-
1c systems and rather small but difficult to determine
with accuracy for the anisotropic ones. Systems at
high densities are not tractable with the Monte Carlo
method used in this work, Thus only data concerning
low and intermediate densities 0 < < 0.6 are re-
ported at present.

3. Combinatorial entropy

In the framework of the mean-field Flory—DiMarzio
statistics the probability of insertion of one more n-
mer molecule into the system is given by following
formula:

pr(@) = (1 —9Y'[1 — (1 — n~1]~(n-1), (¢))

where ;. is the volume fraction of molecules parallel
to direction k. In the case of an isotropic system

Table 1
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Py () is independent of X, because gy, is independent
of k, and g = 2p/z. This is the case of Flory—Huggins
or Miller—Guggenheim statistics [13].

The quantity Aufkg T = —In{p(p)] is 2 change of a
certain reduced chemical poiential related to a virtual
transfer of a molecule from an infinitely dilute system
to a system of density . This quantity is convenient
for comparison of various statistics usually based on
the concept of successive enumeration of chain mole-
cule configuration (during the insertion of one mole-
cule after another into the system). In the Monte
Carlo model p(w) was estimated as the average ratio
{w(p)/w(0)), where «w denotes the number of ways of
putting an extra trial molecule into a system of densi-
ty v and into an empty lattice respectively. Table 1
contains the Monte Carlo results for --n—1in [p(p)] for
the system under consideration. Values computed ac-
cording to eq. (1) are included in table 1 for compari-
son. At least 6 X 10% molecules were tried for the pur-
pose of estimating a single numerical value of p(y). Es-
timated statistical errors in In[p(y)] are below 1% (at
the 90% confidence limit) for low-density data and
reach 3—5% for ¢ = 0.5. In fig. | —n~Yn[p(y)] is
plotted against volume fraction for some core lengths.
We note that the fully flexible chain exhibits the
highest deviation from the mean-field prediction in
the range of densities over which an isotropic phase is
stable. Data for molecules of longer core are better
described by mean-field statistics. This is in agreement

Values of —n"1In[p(yp)] from Monte Carlo simulations compared with the mean-field prediction forn =15

@ r=22) r=52) r=1723) r=92) r=113)  Flory—Huggins ©)
0.05 0.0200 0.0233 0.0267 0.0297 0.0322 0.0367
0.10 0.0431 0.0485 0.0594 0.0623 0.0686 0.0759
0.15 0.0670 0.0768 0.0851 0.0950 0.1025 0.1179
0.20 0.1001 01089 0.1218 0.1326 0.1320 0.1631
025 0.1311 0.1441 0.1554 0.1760 0.1776 0.2121
0.30 0.1727 0.1876 0.1951 0.2043 0.2072 0.2653
0.35 0.2162 0.2296 0.2486 0 2620 02415 0.3232
0.40 02716 02786 0.3006 0 3063 0.2939 0.3868
0.45 0.3292 0.3389 0.3623 0.3654 0.3583 0.4570
0.50 0.4184 0.4213 0.4179 0.3659 0.3426 0.5353
0.55 - - - 0.4320 0.4201 0.6232
0.60 - - - - 0.5163 0.7235

) The case of completely flexible chain.
b) The values calculated according to eg. (1).
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Fig. 1. Plots of —n n|p(p)] versus  for 15-mers on a tri-
angular lattice with various tail lengths. Upper solid Line
corresponds to mean-field prediction (eq. (1)).

with the Monte Carlo computations of McCrackin [14]
for rigid rods on simple square lattice. In the latter
case DiMarzio statistics was found to be quite accurate.

4. Phase transitions

The phase transitions can be recognized from the
curve of chemical potential (fig. 1) versus density and/
or from core order parameter S,

S =2(cos2@®) — 1. )

Averaging of cos?© was made over pairs of molecules

<N(N'— B :Z—:l 12 cos29 . 3

No order was observed in the system of completely
flexible chains or in the system of molecules with core
r =35, in the whole density range under consideration.
The systems of molecules with longer cores, » = 9 and
r = 11, exhibit transitions to an ordered phase at a
density ¢y = 0.45 with changes of density Ay = 0.05
and 0.06 for r =9 and r = 11, respectively. The graph

{cos20) =
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Fig. 2. Core order parameter S for the systems of molecules
with longer rigid part as a function of density. Vertical bars
correspond to 90% confidence limits calculated from the re-
sults of three independent MC runs.

of the chemical potential (see fig. 1) suggests a first-
order phase transition *. Relative density change and
order parameter at the transition increase with in-
creasing length of the rgid part of the molecule. The
transition is spontaneous. It was observed in the pres-
ence of a weak external field as well as without cne.
The core order parameter (fig. 2) at the transition is
quite reasonable, but the dispersion of the data is
large (probably because of the finite size of the MC
box). Ordering of the system manifests itself by the
disappearance of one of the three available orienta-
tions of cores. Two remaining directions of cores are
still occupied, but with one dominating. The proper-
ties of the long core systems between ¢ =0.2 and 0.45
are not clear. The graphs of chemical potential and
core order parameter suggest that, in this range of
density, the system is not quite disordered (compare
fig. 3). The question of existence of a phase transition

* A referee pointed out that computed values of the chemical
potential for the 15-mer with f = 2 exhibit an unphysical
decrease across the transition (see fig. 1 and table 1). The
observed decrease is 1n the range of 4.5%. Taking into con-
sideration the possibility of coincidence of the statistical
errors in both points (3% in this range of density) the de-
crease is not significant.
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Fig. 3. Typical configurations of 15-mers on 30 X 30 pertodic
lattice. (A) The case of r = 5, f = 5, a snapshot from the run
in which mean value of S was equal to 0.009, an example of
a disordered system. o = 0.5. (B) The case of r =11, =2,

¢ = 0.25, mean order 0.17. (C) The caseof r =11, =2,

@ =0.5,and mean order 0.44, an example of an ordered sys-
tem.

in the low-density region requires further study. It is
interesting to note that at the higher-density transi-
tion the mean conformation of molecule becomes
more compact. Fig. 4 shows the dependence of aver-
age cosine between core and the first tail segment on
a volume fraction. Decrease of mean end-to-end sepa-
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Fig 4. Plots of the mean cosmne between directions of the
core and first segment of tail against volume fraction (the
valence angle 1s equal to 180° — a).

ration with increasing density is also observed for all
the systems under consideration.

5. Conclusion

Present MC simulations of rigid cores having flex-
ible tails show that mean-field lattice statistics strongly
underestimate the number of available configurations,
at least for isotropic systems. The difference between
the exaci MC results and mean-field predictions in-
creases with increasing flexibility of the molecular
model. Systems of molecules with sufficiently long
cores seem to undergo a first-order transition at inter-
mediate high density. The relative density change is
about the same as obtained by mean-field statistics
[7]- The core order parameter at the transition, al-
though subject to considerable fluctuation, seems to
be smaller than the prediction of mean-field statistics.
There are some indications of another transition, at
low density, of the system of long cores with tails,
but the question requires further study.
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