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INTRODUCTION

Three-dimensional structure prediction of proteins,

from their sequences is one of the most challenging and

longstanding tasks in structural biology and biophysics.1

Information about three dimensional structures of bio-

molecules is essential for many biological studies, such

as protein function prediction,2–4 computer aided drug

design2–4 and can be important in systems biology.5 So

far, the most powerful and popular method developed

to solve the structure prediction problem is homology

modeling6,7 based on having a known structure of a

good template(s)—proteins having similarity in their

overall sequence or at least in parts. In the case of new

folds, we use less reliable template-free (ab initio) struc-

ture prediction methodology.8,9 Homology modeling is

based on the fact that, homologous proteins, which are

assumed to be related by evolution, share common fold.

There is also a growing conviction that existing struc-

tural databases are rich enough to cover almost com-

pletely the structural universe of proteins, measured by

the number of distinct folds. Template(s)-based model-

ing, in general, can bring the predicted structure

into proximity near 6 Å (or less) from the native state,
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ABSTRACT

Structural refinement of predicted models of biological macro-

molecules using atomistic or coarse-grained molecular force

fields having various degree of error is investigated. The goal of

this analysis is to estimate what is the probability for designing

an effective structural refinement based on computations of

conformational energies using force field, and starting from a

structure predicted from the sequence (using template-based or

template-free modeling), and refining it to bring the structure

into closer proximity to the native state. It is widely believed

that it should be possible to develop such a successful structure

refinement algorithm by applying an iterative procedure with

stochastic sampling and appropriate energy function, which

assesses the quality (correctness) of protein decoys. Here, an

analysis of noise in an artificially introduced scoring function is

investigated for a model of an ideal sampling scheme, where the

underlying distribution of RMSDs is assumed to be Gaussian.

Sampling of the conformational space is performed by random

generation of RMSD values. We demonstrate that whenever the

random noise in a force field exceeds some level, it is impossible

to obtain reliable structural refinement. The magnitude of the

noise, above which a structural refinement, on average is impos-

sible, depends strongly on the quality of sampling scheme and a

size of the protein. Finally, possible strategies to overcome the

intrinsic limitations in the force fields for impacting the devel-

opment of successful refinement algorithms are discussed.
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if homologous structures are present in the structural

database. Homology modeling approaches have been

recently enhanced by the rapid increase in the number of

experimentally solved structures deposited in the Protein

Data Bank (PDB; http://www.pdb.org/). However, often

even the most sophisticated and successful structure

prediction methods (I-TASSER,4,7 CABS,6 Rosetta10),

cannot predict the target structure with accuracy high

enough for practical applications such as the drug design.

Therefore, future progress in computational biology crit-

ically depends on successful refinement of models gener-

ated using standard template(s)-based (or template-free)

modeling techniques. So far, the major progress has been

obtained in protein structure predictions, because of the

strong interests of the scientific community and pharma-

ceutical companies in proteins specifically. Three-dimen-

sional structure predictions of RNA are less developed

than protein modeling. Here, we are going to consider

protein modeling only; but our results are easily applica-

ble to modeling of other biomacromolecules (including

RNA), as well.

Protein structure refinement has emerged as one of the

most important steps in protein structure prediction.

Progress in the field of protein structure prediction has

been observed and measured since 1994 by a biannual

experiment, so called: Critical Assessment of Techniques

for Protein Structure Prediction (CASP; http://prediction-

center.org/), where hundreds of research groups from

around the world compete to predict from the sequence

structures of newly experimentally solved, yet unpub-

lished proteins. The importance of refinement has been

recently emphasized and since the 8th edition of CASP

event (CASP8), a new category of refinement of protein

models was established. Assessment of this new predic-

tion category was done recently by Ken Dill and

coworkers.11 Up to CASP8, protein structure refinement

was often understood to be either improvement in the

structural templates used in homology modeling, or

improvements in the structures of loops and better side

chains packing.12 Now, the main task is to achieve an

overall improvement. If the problem is defined in that

way, it is expected to be very hard to solve. The conclu-

sion from Dill’s analysis is that on average, there is no

improvement in protein structure refinement among

CASP competitors, except for some structural improve-

ments. These conclusions have been recently confirmed

by results of refinement category in CASP9, where only

two groups were able to effectively improve protein

models supplied by structure prediction servers, all other

participants only worsened these initial structures. This

shows that protein refinement is one of the most difficult

problems in protein structure prediction.

Recently, some new approaches for solving this essen-

tial problem have been proposed by Feig and

Coworkers,13 and tested successfully by his group in the

refinement category in CASP9. Feig’s group13 has shown

that, having the ideal scoring function (which was

considered as the RMSD from the native structure), com-

bined with efficient large-scale generation of decoys

enabled the refinement of protein structural models to

high accuracy. They utilized the normal mode analysis

(NMA), among other methods like Monte Carlo (MC)

sampling with side-chain-only (SICHO)14 force field,

or molecular dynamics (MD) simulations at different

temperatures. They showed that NMA is the most effi-

cient sampling scheme; so the model in our work follows

in the same spirit. The procedure used by Feig’s group

was an iterative one. First, they performed molecular

mechanics energy minimization and then employed

NMA computations around the local energy minimum.

After that they generated and evaluated an ensemble of

possible new conformations, along the lowest frequency

normal modes. The conclusion was that, there is still

room for future improvement both in sampling and in

scoring. But no matter which sampling scheme was used,

when RMSD was used as a scoring function, protein

structure refinement was possible. When some errors

were introduced artificially, then refinement was possible

only up to some, small extent, which can be interpreted

to mean that impovements in scoring functions can have

a significant impact on structure refinement.

METHODS

In general, protein structure refinement is possible if a

protein native-like structure sampling algorithm is reli-

able and can efficiently generate better structures (in

terms of some specific metrics). This depends, however,

on the proximity to the native structure and close to it

refinement becomes more difficult. Sampling must be

accompanied by a good scoring function to assess the

quality of the generated structural models (decoys).

Scoring should follow the rule that, if the score is better,

then model is better. To assess the quality of protein

models, it is commonly accepted to use the root mean

square distance (RMSD) between the predicted model

and the native state—although this is arbitrary measure

and other can be applied, that is, TM-score, GDT, frac-

tion of native contacts, etc. RMSD has a disadvantage,

because it is impossible to calculate RMSD without

native structure. Therefore, usually this metric is used to

assess the ability of other scoring schemes. To calculate

RMSD, both structures need to be superimposed. To do

that, a rotation with respect to the center of their masses

is performed to minimize the positional deviations:

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

r
decoy
i � rnativei

� �2

vuut ð1Þ

Here, N is the number of points compared (usually the

number of amino acids in the sequence), and ri
decoy and
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ri
native are the positions (given by the Cartesian x, y, and

z coordinates) of the ith point in both structures. In

cases where each amino acid is represented by a single

point, we commonly identify them with the positions of

the Ca atoms in the protein.15

Choosing sampling algorithm of structural models is

challenging. It has been shown that the probability of

generating a random structure for a protein composed of

N amino acids such that, RMSDdecoy < RMSDlim is given

by the following formula16:

PðRMSDdecoy< RMSDlimÞ ¼ 1

r
ffiffiffiffiffi
2p

p
ZRMSDlim

0

e
�ðx�hRMSDiÞ2

2r2 dx

ð2Þ

The values of hRMSDi and r vary between proteins, but

usually r is assumed to be around r 5 2 Å, and

hRMSDi depends on the protein size. Angular brackets

denote the mean value, that is, the same for all proteins

of the same size. We assume that hRMSDi follows the

power law16: 3.333 N1/3. The assignment of the lower

integration limit to 0 differs from the one proposed by

Feig and Coworkers,13 who assumed that the integration

in Eq. (2) goes from 21 to RMSDlim; however, it does

not significantly change the probability [Eq. (2)] and

using 0 it is formally more correct.

Nevertheless, it is much harder to develop a good scor-

ing function than to develop an efficient sampling

scheme. Moreover, the scoring function should be able to

assign better scores to decoys that are closer to native

state and lower scores to decoys that are further from the

native state (in terms of a metric, such as RMSD).

In the further part of our study, we address the ques-

tion of using nonideal scoring functions for the protein

structure refinement problem. To deal with this task, we

designed an ideal sampling scheme based on the decoy

distribution found by Feig’s group. Then, we applied it

to assess the efficiency of using a nonideal scoring func-

tion, which appears to perform better in recognizing best

decoys than usual atomic force fields. In this case, better

means correlation between RMSD of the decoy and

energy for this model. We found that, even small errors

in the scoring function can prevent the refinement algo-

rithm from finding a good solution, if the Feig’s proce-

dure is applied.

The nonideal scoring function, to assess the quality of

the decoys, is designed as follows:

fRMSD ¼ RMSD0 þ N 0;rNð Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSD0

p
ð3Þ

where RMSD0 denotes the real (true) value of RMSD of

the decoy from the native structure, and rN is a standard

deviation of Gaussian noise applied to the scoring func-

tion. Gaussian noise used in our computations is justified

by the central limit theorem. It means that the errors in

the force field are not caused only by a single factor, but

instead are a superposition of many of factors, mainly

because of the model coarse-graining. Here N(l, r) is a

number generated from the Gaussian distribution

function with mean value l and standard deviation r.
Figure 1 shows an example of such distribution for a

scoring function. The scoring function was designed in

such a way, that the errors in assessment of quality of

decoys increase, as the number of non-native interactions

in the decoy increases. We suppose that the number of

non-native interactions increases as decoys’ conforma-

tions gradually depart from the native state. In this way,

we attempt to design a funnel-shaped energy landscape.

We define non-native interaction as those, which do not

exist in the native structure, when a certain cut-off dis-

tance is applied to identify interacting pairs of atoms. We

notice that the shape of our scoring function in Figure 1

may be suitable protein structure prediction and is no

worse than most of the existing coarse-grained force

fields17 (in terms of noise in scoring function).

Our ideal sampling scheme is designed as follows. In

each iteration, starting from the decoy with RMSD equal

to RMSDold 250 new decoys with new RMSDdecoy value

are generated according to:

RMSDdecoy ¼ RMSDold þ N 0;rCð Þ
þ C hRMSDi � RMSDoldð Þ ð4Þ

where hRMSDi is defined similarly as in Eq. (2). The first

term in Eq. (4) corresponds to the RMSD value of the

initial structure in each iteration of the refinement proce-

dure. The second term is responsible for generation of

new decoys RMSD value with the normal distribution

around the starting conformation RMSD. The form of

this function in Eq. (4) is similar to that proposed by

Feig and Coworkers. rC corresponds to the magnitude of

the structure deformation during a single refinement

iteration (trial). It can be easily understood, if we keep in

mind that they generated decoys by applying NMA to

structural fluctuations around non-native structure. The

size of these deformations can be set to an arbitrarily

value or taken to have some correspondence to thermo-

dynamic parameters, such as temperature. The third

term in Eq. (4) is introduced by us based on results

obtained by Feig’s group, and by Ken Dill’s assessment of

CASP refinement results. There are additional theoretical

reasons to introduce this term that are suggested by

Wolynes’ energy landscape theory of protein fold-

ing18,19; a funnel-like conformational space near the

native structure is less populated than far from it.

Interpretation of this fact results from the conformational

entropy, since there is only one native structure, corre-

sponding to the global minimum, and many non-native

local minima. This leads to a simple shift of N(0, rC)

distribution, that could be expressed by changing the

Noise in Force Fields and Protein Refinement
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mean value of this distribution. That is presented in

Eq. (4) in such a factorized form, with C being the shift

parameter, to accent the separation of decoy generation

in a random fashion, and the shift caused by bringing

decoys to the vicinity of the native state. The parameter

C strongly depends on the quality of the decoy genera-

tion algorithm, that is, the type of deformations applied

to the molecule, and the structure of the target. For each

refinement run, we performed 1000 iterations. After

decoys RMSDs generation in each iteration, all decoys

are assessed by Eq. (3), and the decoy with the best score

is chosen (lowest RMSDdecoy), as a starting point for the

next iteration. Then the results of over 250 experiments

for each set of parameters were averaged. Because of the

stochastic nature of sampling, it is important to use the

average estimation of the refinement algorithm instead of

considering a specific single run. It is important to

remember that, we did not generate conformations of

the decoys explicitly, but only considered their RMSD

values from the native structure. In this way, we were

able to avoid all possible inaccuracies and errors due to

the sampling scheme.

RESULTS AND DISCUSSION

It was examined how random errors in the force field

(rN) can affect the refinement procedure. The results are

shown in Figure 2. The calculations were performed

for the shift parameter C 5 0.005, and the length of the

protein L 5 100 amino acids. Small values of C assure

us that the shift term is not dominant in our model.

From the plot (Fig. 2), we can conclude that in the case

when the white noise is applied to a nearly ideal scoring

functions (where the noise is small with rN < 0.2) then it

is possible to obtain on average convergence of the refine-

ment algorithm usually in less than 1000 iterations. On the

other hand, if rN is equal to or larger than 0.25 the

performance of the refinement algorithm is corrupted by

noise, and divergence of iteratively refined structures from

the native state is observed. Of course, it is still hypotheti-

cally possible to refine the model in a very long simulation,

because there is always a non-zero probability of bringing

the decoy back to the proximity of the native structure.

From Figure 1, we can see that, in proximity to the native

structure, the noise is even smaller [because of the addi-

tional scaling by the RMSD0 factor—see Eq. (3)] so that if

the structure can be brought to this point, the convergence

of structure refinement is more easily achieved. However,

it is important to mention, that such a long refinement

process is highly impractical, because it would require

computing enormous numbers of decoys.

The number of evaluations needed to refine the struc-

ture is determined by several factors. First is the distance

(RMSD) of the starting model from the native structure.

Another factor is how large are the modifications applied

to the model. If we make small changes then the refine-

ment process is slow. Because for rN 5 0.20, we obtain

quite rapid convergence of the refinement algorithm this

Figure 2
RMSD of the best scored decoys from the native structure during

refinement iterations. Curves are for different values of rN parameter.

Length of the protein is equal to L 5 100, rC 5 0.10, and initial

RMSD 5 6.0 Å. Averaging was performed over 250 simulations.

Figure 1
Scoring function to assess the quality of generated decoys, computed

from Eq. (3) (see text). Noise parameter rN is set to 0.25. The plot was

computed from the distribution of energy versus RMSD, at intervals of

0.05. For each bin, the distribution has been normalized to lie between

0 and 1.
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value of rN has been used by us to study how the decoy

generation algorithm [parameter rC in Eq. (4)] behaves

in the presence of the noise with this magnitude. (See

Fig. S1 in Supporting Information). In cases when we

apply very small deformation to the initial decoy in the

sampling procedure, the refinement leads to structural

divergence, however, for larger values of rC, we obtain

the structural convergence. This convergence is, of

course, driven by Eq. (3), but only in cases when the

decoy is brought into the vicinity of the native state early

in the refinement process. Otherwise, the decoy diffuses

in the energy-RMSD space. It is caused by the fact that

the energy function leads to the accumulation of errors

in a direction away from the native structure. Therefore

if the sampling scheme can generate broad range of new

decoys, even if one picks a decoy that is not the best one,

because of errors in quality assessment, refinement still

converges. Equation 4 also suggests dependence of the

sampling efficiency on the parameter C. In the case when

C 5 0.0, the algorithm will generate a half of the decoys

that are closer to the native state than the decoy from

which they were generated. The dependence of the effec-

tiveness of the structure refinement algorithm is shown

in Figure S2 in Supporting Information. It is notable that

the effect of increasing the parameter C is opposite to

the effect of changing the parameter rC. Therefore the

effect of making bigger structural changes in generated

decoys is opposite to shifting their distribution.

An important issue is the dependence between the size

of protein (the length of amino acids chain, L) and the

performance of the structural refinement. This problem

was pointed out by Dill and coworkers, who noticed,

that the refinement of larger structures in CASP is on

average worse than for smaller ones.11 The reason for

this is that the sampling scheme and its efficiency depend

on the protein size. It is caused by significantly higher

dimensionality of the conformational space for large

proteins. To study this issue, parameters for which

good convergence was observed, were chosen (rC 5 0.1

rN 5 0.20). The results are presented in Figure S3 in

Supporting Information. We see that the possibility of

structural refinement of protein models is strongly

dependent on protein size. For larger proteins, we need a

better and longer sampling scheme, and a more accurate

scoring function to prevent the divergence of the refine-

ment algorithm. It seems that for a given accuracy of the

force field, and the specific sampling scheme, we can

establish an upper bound for the size of protein to achieve

structural refinement. Therefore even if we have an effi-

cient refinement algorithm for refining small proteins, it

can fail (diverge) in refining larger proteins. Additionally,

because of entropic reasons, the probability of generating

better structures decreases when the quality of decoys

increases (see Fig. S4 in Supporting information).

So far, we have analyzed only the possibility of structural

refinement starting from the model with RMDS 5 6.0 Å.

Normally, we would have initial models with various reso-

lutions. Therefore, interesting insights can be gained from

the analysis of the refinement of models with different

quality (measured by RMSD) as the initial structural mod-

els. Models with resolution from 6 to 9 Å away from the

native state usually come from template-free (de novo aka

ab initio) protein structure prediction, while those with

resolution below 6 Å usually result from template-based

homology modeling.20 In Figure 3, we can see the results

for different qualities of initial models. In case of models

with resolution ranging from 6 to 9 Å, we observe that iter-

ative refinement produces decoys with RMSD value within

this range, so it seems to be impossible to move out of this

range of resolution during refinement. A different situation

is observed in the case of homology modeled structures. If

the initial structure is predicted with a resolution of 4 Å,

then there is divergence. In cases with good initial models

(with resolution 2–3 Å),21 further structural refinement is

achieved. This result is consistent with Dill’s findings, who

reported that for some good starting models, several

research groups were able to obtain structural refinements.

It means that, if we can bring the model structure close

enough to the native state, significantly confined confor-

mational space facilitates a further structural refinement.

Performance of the refinement algorithm shown in

Figures 2 and S1–S3 was averaged over different setups,

corresponding to different distributions used during the

simulations. Therefore, the results for specific setups have

been additionally investigated. The results are shown in

Figure 3
RMSD of the best scored decoys from the native structure during

refinement iterations. Curves are computed for different values of

the initial models quality (RMSD) with L 5 125, rN 5 0.20 and

rC 5 0.10. Averaging was performed over 250 simulations.
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Figure 4. The simulations were performed 5000 times,

starting from RMSD 5 2.0 Å, and for the parameters set

up: L 5 125, rC 5 0.10, rN 5 0.20. Despite of the con-

vergence on average, we can clearly observe a bimodal

distribution. In some cases, the structural refinement

towards the native state is possible and in some it is not.

We can see a sharp distribution centered around 0 Å and

then quite long, smooth tail from 2 to 8 Å. The sharp

peak comes from the fact that, if refinement algorithm

brings structure close to native, where the amount of

noise is smaller, the native structure can be iteratively

achieved. Figure 4 suggests that in further refinement

benchmarks (like CASP), attention needs to be paid to

averaging results over many refinement trials to properly

assess these methods.

CONCLUSIONS

We studied simple, stochastic model of refinement of

biomolecular structures. The model is qualitative in na-

ture; so the values presented here should not be related

to any particular case. Our results show that even for

highly efficient sampling scheme of native-like decoys,

small errors in decoy scoring function can prevent the

algorithm from the possibility of refining modeled pro-

tein structures. The reason for this lies in the stochastic

nature of sampling scheme and errors in force fields.

An iterative refinement process can mimic diffusion of

decoys on the energy funnel-like landscape, with addi-

tionally applied noise. The shape of the landscape can

push the decoys away from the native structure in the

presence of noise. When the magnitude of the noise

exceeds a certain specific value, then decoys diffuse in

such a space, and refinement cannot converge to better

structure. It not only mean that the native structure can-

not be found, but also a refinement of more flawed

structures is less likely possible. The parameters values

are dependent on the shape of the energy function and

the size of the protein. It is also important to emphasize

that the values of parameters rC and rN, for which the

convergence of the refinement algorithm is obtained, are

smaller than similar parameters estimated for real scoring

functions used in the protein folding problem.17 It seems

that future advances in structural refinement of protein

models depend mostly on significant progress in develop-

ing better force fields having less uncertainty,22 which

can be specifically designed for structure refinement.

Another possibility of advancement in this field might be

a design of a novel sampling scheme that possesses the

ability of generating more likely native-like decoys.
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the Gaussian kernel was applied to estimate density.

P. Gniewek et al.

340 PROTEINS



using a coarse-grained model, normal modes, nad molecular dynam-

ics simulations. Proteins 2008;70:1345–1356.

14. Kolinski A, Skolnick J. Assembly of protein structure from sparse

experimental data: an efficient Monte Carlo model. Proteins 1998;

32:475–494.

15. Kabsch W. A solution for the best rotation to relate two sets of vectors.

Acta Cryst 1976;A32:922–923.

16. Reva BA, Finkelstein AV, Skolnick J. What is the probability of a

chance prediction of a protein structure with an rmsd of 6 A? Folding

Des 1997;3:141–147.

17. A.V. Finkelstein. 3D protein folds: homologs against errors—a simple

estimate based on the random energy model. Phys Rev Lett 1998;80:

4823–4825.

18. Bryngelson JD, Wolynes PG. Spin glass and statistical mechan-

ics of protein folding. Proc Natl Acad Sci USA 1987;84:7524–

7528.

19. Frauenfelder H, Sligar S, Wolynes PG. The energy landscapes and

motions of proteins. Science 1991;254:1598–1603.

20. Kopp J, Bordoli L, Battey JN, Kiefer F, Schwede T. Assessment of

CASP7 predictions for template-based modeling targets. Proteins

2007;69:38–56.

21. Rost B. Twilight zone of protein sequence alignments. Protein Eng

1999;12:85–94.

22. Stumpff-Kane AW, Feig M. A correlation-based method for the

enhancement of scoring functions on funnel-shaped energy landscape.

Proteins 2006;63:155–164.

Noise in Force Fields and Protein Refinement

PROTEINS 341


