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Protein structure predictions, and experimentally derived protein structures, very
often require certain structure improvement (refinement), which means bringing
it closer to real, usually in vivo working conformations. In respect to the variety
of protein models to be refined, computational optimization procedures could be
divided into localized (applied to a small part of a structure) and global (whole
structure). Generally speaking, the first problem is usually tractable, and the
latter remains to be extremely challenging for systems larger then peptides or
small proteins: optimization complexity and difficulty dramatically increase with
the size of structures to be optimized. C© 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

S ince the past few decades, structural refinement
has been considered the last milestone in the pro-

tein structure prediction problem. The refinement (op-
timization) of predicted models might sound similar
to other refinement protocols, such as those for X-
ray and nuclear magnetic resonance (NMR) protein
structure determination. The refinement tailored to
predictions is, however, significantly different from its
counterparts related to structure determination with
experimental techniques. Crystallographers start their
refinement from an all-atom initial conformation and
attempt to refine phases and local conformational de-
tails, which lead to an improved model. This contin-
ues until the correlation between the diffraction data
and the model is maximized. Similarly, NMR refine-
ment starts from an atomic model and experimental
data, seeking for a set of coordinates that better ex-
plains the measured observables. In both cases, an
all-atom structure is refined based on true experimen-
tal data, usually fraught with experimental errors. To
the contrary, in protein structure prediction refine-
ment starts usually with a large number of models,
often in very simplistic representation, being aimed
at the following three objectives simultaneously: (1)
to rebuild atomic details from a reduced representa-
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tion, (2) to improve the shortcomings of a model, and
(3) to select the final structure out of a (usually) very
large pool of proposed models. Because of the broad
character of these objectives, the refinement of pro-
tein models is a very difficult task, sometimes being
close to the impossible.

The need for the refinement of protein predic-
tions comes from the demand for three-dimensional
(3D) protein structures. Knowledge of protein struc-
tures provides invaluable insights into the molecular
basis of the machinery of life. Although spectacular
progress has been made in structure determination
using experimental methods, such as already men-
tioned X-ray crystallography and NMR spectroscopy,
such methods are still very expensive, time consum-
ing, and require highly qualified personnel. Since the
very first protein structure of myoglobin was eluci-
dated in 1960,1 combined experimental efforts re-
sulted in nearly 80,000 protein structures deposited
in the Protein Data Bank2 (as of June 2011). At the
same time, the size of the known protein sequence uni-
verse counts in millions, with more than two million
available in the release of 2011 05 UniProt3 in May
2011. More importantly, the growth of the known
sequence space is much faster than for the structure
space, and the gap between the two is continuously
widening. In the near future, computational methods
are the only hope to bridge the gap by providing theo-
retical models for at least a part of the sequence data.
Better optimization methods for computed models to-
ward high-resolution structures seem to be the only
way to make the computational approaches reliable
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FIGURE 1 | Stages of integrative structure determination and analogous structure prediction. Structure determination by integrating varied
data from experiments and modeling can be divided into four steps12: (1) generation of structural data by experiment, (2) data translation into
spatial restraints, (3) optimization, and (4) ensemble analysis. These four steps are also characteristic for structure prediction, shown here for easy
modeling cases (unambiguous data derived from homologous proteins) and difficult ones (ambiguous or sparse data) embedding fold recognition
methods, together with de novo modeling.

and accurate. Model optimization, being the last stage
of the theoretical protocols, is the final opportunity
to improve model’s quality and, hence, its value for a
biologist. Quality of models and their potential appli-
cations (such as functional site detection4–6 or molec-
ular replacement7) as well as the state of the art of
structure modeling, in general, were subject of excel-
lent reviews, for example, by Schwede et al.,8 Sanchez
et al.,9 Tramontano,10 and Baker and Sali.11

Another important application of protein struc-
ture optimization methods is integrative structure
determination, combining experimental information
from varied sources. Recently, such approaches en-
abled the generation of atomic models of previ-
ously intractable large protein assemblies.12 Some of
these achievements have been possible due to the
recently emerging experimental techniques, such as
mass spectrometry of complexes and single-particle
cryo-electron microscopy, and due to the availabil-
ity of high-resolution structural data for individual
subunits.12,13 In general, integrative structure deter-
mination is an analogous task to protein structure pre-
diction and similarly requires intervention of structure
optimization methods as outlined in Figure 1. Apart
from the possible role in integrating various exper-
imental data, computational structure optimization
has been recently used in experimental-based proto-

cols, such as the most widespread X-ray crystallog-
raphy. As demonstrated recently, X-ray structure de-
termination can be improved, or made possible, by
combining crystallographic map interpretation tools
with structure prediction methodology.14

STRUCTURE PREDICTION METHODS
AND STRUCTURAL ERROR THEY
INTRODUCE
The computational methods for protein structure
modeling may be divided into two very broad classes.
Comparative modeling approaches (usually preceded
by fold recognition procedures) use a template struc-
ture (or structures) of an already experimentally an-
notated protein (or proteins) as a scaffold (scaffolds)
for model building. These methods can only be em-
ployed when a detectable template of a known struc-
ture is available. When such a template or templates
cannot be found, only a de novo method can be ap-
plied. It should, however, be noted that almost all
of the current prediction methods, and template-free
approaches in particular, utilize known protein struc-
tures to train machine learning classifiers or to derive
knowledge-based scoring functions. The commonly
accepted distinction between the template-based and
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FIGURE 2 | Approximate dependence of sequence alignment
accuracy and expected models accuracy on the percentage of sequence
identity. The classification of model accuracy (see Table 1) practically
agrees with alignment accuracy, which falls into one of the following
three zones of sequence similarity (defined by Rost15): safe, twilight,
and midnight zone. The twilight zone denotes a huge drop in
alignment accuracy (roughly in the range of 25%–30% of sequence
identity) from the safe zone (high level of sequence similarity—
proteins also have similar structures and functions) to the midnight
zone (low level of sequence similarity—protein similarity cannot be
detected from sequence comparisons alone).

the template-free methods is based on the use of a
particular structure (or a few of them) for gathering
information about the overall fold, assignment of sec-
ondary structure elements, their mutual orientation
in space, and so on. The modeling process is usually
guided by alignment, which is a correspondence be-
tween the two sequences (a target and a template), and
consequently defines the expected similarity of their
structures. The accuracy of the final model critically
depends on alignment accuracy, whereas alignment
accuracy strongly depends on the sequence similarity
between the target and the template (see Figure 2).
Typically, a number of homology search tools, such
as PSI-BLAST,16 profile-to-profile alignments,17,18 or
Hidden Markov Models,19 could be used for the iden-
tification of proteins of known structure which are
evolutionary related to the query sequence. Depend-
ing on the sequence similarity between the query and
the templates, as well as the alignment coverage, the
modeling process branches either into comparative
modeling or into de novo prediction (see Figure 1).
The alignment may be considered a recipe that defines
which parts of the template structure may be directly
used to construct some parts of the target. Remain-
ing fragments of the target (usually loops) have to

be modeled explicitly. The amino acid sequences of
the structural pieces taken from a template frequently
differ from the respective sequence of a target; there-
fore, residue side chains have to be reconstructed and
repacked. The optimization of side-chain conforma-
tions is a very important and common application of
the structure refinement methods.

In contrast to comparative modeling, de novo
methods do not assume any knowledge about the ar-
chitecture of a target. Therefore, it is expected that
these methods will sample a substantial number of
different protein topologies (global optimization, see
Figure 1) and that the proper one will be selected
based on energy criteria. In practice, these two goals
are, to a large extent, mutually exclusive. To effec-
tively sample the immense conformational space of a
polypeptide chain, coarse-grained representations are
commonly used to reduce the number of degrees of
freedom treated in an explicit way and to flatten the
energy landscape. Usually, such coarse-grained force
fields are not accurate enough to distinguish between
alternative protein topologies and will most likely fail
in the selection of the correct one. In such cases, the
common approach is to convert reduced space models
into the all-atom representation, followed by their re-
finement and rescoring.20 At the reconstruction step,
where the missing atoms are added, the number of de-
grees of freedom necessary to represent the modeled
system may increase several times. Resulting energetic
end entropic barriers impose a considerable challenge
for sampling methods and require large computa-
tional efforts.

In principle, errors can occur at each step of the
modeling process, even in very easy modeling cases
when a high-resolution model is expected of a similar
accuracy to experimentally derived structures (for a
short outline of error sources, see Table 1). Template-
based methods rely upon a template structure which
occasionally may be wrongly assigned. Errors of this
kind are almost impossible to fix, especially if the
selected template is qualitatively different from the
correct one. Even when the template has been identi-
fied correctly, but it does not share sufficient sequence
similarity to the target sequence, alignment between
the two sequences is a nontrivial task. In such cases,
model structure refinement should be applied already
at this stage. Small errors in alignment, such as a
shift of a few residues, may be tolerable for some
methods, depending on how structural information
is incorporated in the modeling process. The most
straightforward approach—just copying the appro-
priate structural fragments from a template into the
model—is the most error prone. A more error-tolerant
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TABLE 1 Application of Protein Models According to Their Accuracy8,11,21 (See also Figure 2 for the
Classification of Model Accuracy According to Sequence Identity)

Model Accuracy (Sources of Errors) Model Applications

High: Target-template sequence alignment higher than 50%
sequence identity (about 1 RMSD for the main chain: mistakes
in side-chain packing, small shifts of the core main chain
regions, incorrect loop reconstruction).

Medium: Target-template sequence alignment between 30%
and 50% sequence identity (about 90% of the main chain
modeled with 1.5 Å RMSD error, alignment: small errors in
nonconserved segments, incorrect loop reconstruction).

Studying protein interactions with small molecules: enzyme
mechanisms, structure-based drug design, ligand docking.

Molecular replacement, protein design (stable, crystallizable
variants, structural support for mutagenesis),
protein–protein docking (prediction of protein partners).

Integrative modeling (e.g., NMR structure refinement,
modeling into low-resolution density maps), defining
antibody epitopes.

Low: Target-template sequence alignment lower than 30%
sequence identity (substantial alignment errors, suboptimal
template selection)

Functional relationships from structure: finding functional
sites by motif searching, identifying conserved (functional)
surface patches

RMSD, root mean square deviation; NMR, nuclear magnetic resonance.

approach is to follow a de novo modeling protocol,
with, however, strong restraints acquired from the
template structure. A floating restraint function that
allows small shifts in the definition of restraints (say,
±1 or 2 residues) may be used in such cases to accom-
modate alignment ambiguities.22 Another advantage
of such approaches is that incorporating the informa-
tion from several structural templates is straightfor-
ward. It should be, however, pointed out that none
of these methods can fix severe alignment errors. In a
recently proposed method, template-based modeling
can be performed without any alignment prior to the
modeling,23 which successfully alleviates alignment-
induced errors. The structural modeling is done di-
rectly onto a multifeatured scaffold created from a
template structure and projected on a 3D grid in
the Cartesian space. The method can be described
as alignment refinement coupled with simultaneous
structure refinement. Alternatively, alignment-related
errors may be handled by generating many alternative
alignments (from thousands to millions). Each align-
ment is used independently in a structure modeling
process and the final model is selected from the multi-
tude of models based on alternative alignments.24

Due to the shortcomings of the fold search
(global optimization) and/or subsequent model selec-
tion methods (see Figure 1) de novo and fold recogni-
tion approaches usually introduce much more serious
errors than comparative modeling. In the scenarios
where template information is not available or it is
very sparse and limited, some of the native secondary
structure elements may be missing, mispredicted, or
incorrectly oriented within the model structure. It is
also very likely that the overall topology of the model
is incorrect. Subsequent structure optimization is usu-
ally performed on a local scale (see Figure 1) and in-

cludes small changes in the orientation of secondary
structure elements, loop remodeling, and side-chain
repacking. Typically, a very large number of low-
resolution trial conformations are proposed that sam-
ple very broadly the conformational space available
for a given polypeptide sequence. All-atom refinement
and scoring is frequently combined with structural
clustering as a method of selection of a handful of fi-
nal models out of millions of trial conformations.25,26

Contrary to experimentally derived structures,
where error level and their distribution along the
structure may be deduced from the discrepancy be-
tween the model and the experimental measurements,
theoretical models do not provide any clues on their
accuracy. The error estimation, in this case, imposes a
great challenge on its own. Model quality assessment
(MQA) problem, that is, the possibility of predicting
the accuracy of structural models has become a well-
defined field of active research, reviewed recently by
Kryshtafovych and Fidelis.27

PHYSICS-BASED OPTIMIZATION
Molecular dynamics (MD) simulations enable us to
follow atomic motions of molecular systems. As such,
they provide invaluable information about the dy-
namic aspects of proteins, on top of the structural
information, which is available from crystallographic
studies.28 Given computational costs, studying fold-
ing with explicit solvent fully atomic MD has been
limited to only small systems, such as peptides and
small proteins.29 A tempting approach is to use all-
atom MD for protein model refinement, but despite
considerable efforts, all-atom refinement has shown
limited success.30 Different aspects and issues have
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been discussed in the literature and are briefly sum-
marized below.31–35

In the study of 12 small, single-domain proteins
with different topologies, Lee et al.31 noticed that
although explicit solvent MD and implicit solvent-
free energy calculations are very successful in rank-
ing native structures and filtering models generated
by the Rosetta method; any refinement of the models
was beyond the scope of the suggested methodology.
It has been commented that perhaps longer simula-
tion times are needed for more systematic structure
refinement.

The problem of simulation time in fully atomic
refinement was further elucidated by Fan et al.32 They
concluded that very long simulations are needed to
overcome kinetic barriers. To observe major struc-
tural changes, simulations on at least a microsecond
time scale will be needed. Increasing the temperature
to improve sampling was quite effective when the ini-
tial model was close to the target structure but did not
work (in fact, often resulting in a major loss of struc-
ture accuracy) when the initial model was far from
the target and not in a local potential energy well.

Moreover, current force fields are ‘not perfect’
and in some cases can generate nonnative conforma-
tions even when the simulations are carried for (ap-
parently) sufficiently long times.

Wroblewska and Skolnick36 employed a bench-
mark set of 150 nonhomologous proteins in the ex-
periment aimed at recognition of the native structure
from decoys. They demonstrated that the MM-GBSA
(Molecular Mechanics with Generalized Born Surface
Area) energy failed the test when all the structures
were sufficiently minimized and concluded that some
of the earlier successes in recognizing native structures
by physics-based all-atom force fields were artifacts of
decoy preparation procedures.

In another study aimed at the structural refine-
ment of a set of single-domain, nonhomologous pro-
teins with different folds, a carefully optimized all-
atom Amber ff03 potential was used.34 Structural im-
provements were observed for 70% of the models on
average and 10% of decoys were refined to near ex-
perimental accuracy, below 2.5 Å.30 However, this
result was obtained for a compact decoy set, span-
ning the range of 0–8 Å Cα crmsd (coordinate root
mean square deviation) from the native structure. For
more distant structures, a reasonable correlation of
MD energy with similarity to the native structure is
rather improbable.

Feig et al.35,37 proposed an iterative structure
refinement protocol with an idealized scoring func-
tion. Selection of crmsd as the idealized scoring func-
tion enabled clear separation of the sampling prob-

lem from the scoring problem. This way the focus
was on an assessment of the performance of sam-
pling methods at different resolution levels. It has
been found that CHARMM1938 and SICHO39 mod-
els lead to initially rapid refinement of a small set
of proteins, but they are eventually outperformed by
an all-atom model with a CHARMM2240 force field
with distance-dependent dielectric implicit solvent ap-
proximation. Also, the PRIMO41 model performed
well in generating near-native models with reduced
representation of conformational space, and thus with
reduced computational costs.

Finally, it is worth mentioning that apart
from the refinement approaches that purely depend
on physics-based methods, there are also a num-
ber of methods that refine structures combining
physics-based methods with the use of experimental
restraints42,43

KNOWLEDGE-BASED OPTIMIZATION
The protein structure is a densely packed system of
atoms with a 3D network of connections imposed
by covalent and hydrogen bonds. This makes its en-
ergy landscape extremely rugged. A refinement pro-
cess can be defined as a walk on this surface in the
quest for energy minimum better than the starting
one, and it is a very difficult task. Knowledge-based
force fields open a possibility to alleviate some of the
minima and to make the landscape smoother. On the
contrary to MM force fields, statistical potentials are
often multidimensional and context dependent. For
example, the statistical description of hydrogen bond-
ing interaction recently proposed by Grishaev and
Bax44 is based on six-dimensional statistics derived
from a subset of known protein structures. In an-
other example,45 backbone-dependent potential for
rotamer assessment is a function of Phi, Psi, and all-
Chi angles, which results in a function of six vari-
ables for Arginine and Lysine. Probably the most far-
reaching case of such a type of approach is the CABS
force field,46 where interactions between side groups
and model hydrogen bonds are explicitly connected
to a complex and multi-featured molecular context.
Such potentials, based on multidimensional statistics,
enable capturing subtle effects observed in proteins
that cannot be captured by MM interactions.

Hierarchical Approach to Optimization
In the case of physics-based optimization, the walk
on the energy surface is guided by forces. Conversely,
knowledge-based approaches usually combine Monte
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Carlo sampling with various structural micromodifi-
cations (moves) to drive sampling toward the desired
solution. The overall refinement problem may be split
into a multilevel hierarchy, roughly corresponding to
the levels of structure optimization. In some of the
approaches, various independent assessment methods
are used to indicate the regions of a model structure
that have to be refined. Sampling efforts addressed
to different parts of a refined model may actually di-
rectly depend on the local structural quality assigned
to these areas.

Side-Chain Optimization
Side-chain refinement may be combined with back-
bone moves or performed as a separate task. Indeed,
many methods have been proposed in the literature,47

devoted solely to side-chain conformation optimiza-
tion. In general, the methods attempt to optimize a
fitness function (energy, score, etc.) according to dif-
ferent optimization methods: dead-end elimination
(DEE)48,49 theorem, gradient-based minimization, ge-
netic algorithms,50 and Monte Carlo sampling. These
approaches have various execution times, but a re-
duction in the run time usually leads to corresponding
accuracy tradeoff.51

Loop Modeling
Loop modeling is another important concept in com-
parative protein structure prediction that may be de-
tached from other protocols and considered a sepa-
rate task. During loop modeling, it is most often as-
sumed that the structural core of the target has been
already modeled with good accuracy and only the
loops have to be reconstructed. In the cases when
the template protein is closely related to the target,
this assumption is generally fulfilled. Technically a
loop region is subjected to conformational sampling,
whereas the rest of the structure contributes only to
the energy of a loop conformation. In principle, the
protein core much better preserves its structure in the
course of molecular evolution, whereas loops are usu-
ally variable in both sequence and structure even in
the same protein family. However, it is often the case
that the loop cannot be refined without simultane-
ously refining adjacent portions because of structural
inaccuracies surrounding the loop region. As shown
by Jacobson and colleagues,52 extending the refine-
ment area to include only the loop and the adjacent
regions may improve prediction accuracy.

The loop structure and sequence variability
makes them the most difficult regions to model by
comparative modeling approaches (loop modeling is
often termed a ‘small de novo prediction’ problem),

and in general, the accuracy of homology models is
the lowest in loop regions. However, loops are im-
portant for protein functions and play critical roles
in protein recognition. In general, loop modeling
methods53,54 can be divided into two classes: database
search and de novo. Methods from the former group
attempt to find in structural databases main chain
segments that fit the anchor regions of a loop. In
the latter, conformational space of a loop is sampled
to minimize its energy. Loop conformations may be
generated by Monte Carlo search procedure,55 kine-
matic loop closure,56,57 Cyclic Coordinate Descent
method,58 or de novo hierarchical procedures.52

Recent studies on proteins structure and func-
tion provided another type of target for molecular
simulation, similar to the loop modeling but even
less tractable: intrinsically disordered regions. The
regions, typically longer than loops, exist as ensem-
bles of fluctuating structures lacking in stable struc-
ture and many of them undergo coupled folding
and binding processes. Even though molecular sim-
ulation methods have only recently been applied to
the study of protein disorder, they have already pro-
vided a new structural insight into disordered state
ensembles.59

Examples of Knowledge-Based
Optimization Methods
A number of different approaches have been proposed
over the recent years for solving the refinement prob-
lem. The last edition of the critical assessment of tech-
niques for protein structure prediction (CASP) com-
petition alone had 34 groups participating in this cat-
egory. Components of these methods and their key
ideas are discussed in the relevant sections of this
review. Here, we provide a more detailed descrip-
tion of two leading methods. Both of them combine
knowledge- and physics-based elements.

Rosetta
In the Rosetta method,60 short structural fragments
are used to construct polypeptide chains. The frag-
ments (most typically three and nine residue long)
are extracted from the known protein structures61

and represented by main chain and single united
atoms for side groups. During the sampling pro-
cess, model chains undergo a long series of dele-
tions/insertions of such building blocks. After short
simulated annealing in the reduced space, the best
scoring model is selected, reconstructed to the all-
atom representation (including all hydrogen atoms),
and subjected to Monte Carlo refinement with deep
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energy minimization. All-atom Rosetta energy com-
prises 21 knowledge-based terms, such as a multi-
dimensional hydrogen bond,62 solvation energy, or a
score based on Ramachandran (i.e., Phi/Psi) statistics.

There are several refinement protocols in
Rosetta, designed for different refinement goals. All
of them comprise small backbone perturbations, ro-
tamer repacking, and gradient-based energy mini-
mization. These three components could be to a great
extent customized, depending on a particular prob-
lem. Backbone perturbations are performed either by
a small random change of Phi/Psi/Omega angles or by
a backrub63 move. Low-energy rotamer selection64

employs a rotamer library in Monte Carlo simulated
annealing. The resulting low energy conformation is
further optimized according to rotamer trials with the
side-chains minimization (RTMIN) protocol.65 In a
single trial, all rotameric conformations for a certain
amino acid side chain are attempted. Each rotamer
energy is minimized in the dihedral space with the
rest of the protein held fixed. A rotamer that intro-
duces the largest drop in the total energy is intro-
duced. The algorithm proceeds by randomly selecting
another amino acid in the protein chain and repeat-
ing the RTMIN step. Such a procedure enables us
to go beyond the limitations of a discrete rotamer
library and samples a continuous spectrum of side-
chain conformations. At the end of the refinement
calculations, all-atom energy function may be sub-
jected to Davidon–Fletcher–Powell minimization ei-
ther in the dihedral (Phi, Psi, Omega, and Chi) or in
the Cartesian space.

During the whole-structure refinement proto-
col applied to every model obtained from Rosetta-
reduced space simulation, Phi/Psi angles are given
very little freedom to move. The main purpose of
this protocol is to repack side chains and to find the
lowest value of all-atom energy for a given confor-
mation of a protein backbone. It has been shown66

that Rosetta all-atom energy may be used to identify
the correct (i.e., native-like) model providing that the
input structure subjected to the refinement protocol
is already close (about 2.5 Å or better) to the true
answer.

During loop refinement, Rosetta holds all the
secondary structure elements fixed. Trial loop con-
formation may be generated according to one of
a few different algorithms implemented in Rosetta,
for example, CCD,58 from a loop library or inverse
kinematics.67 A new loop conformation is then sub-
jected to side-chain repacking and refinement as de-
scribed above. The loop modeling protocol can be
easily applied to refine any arbitrary part of a protein
structure.

KnowMIN
Levitt et al.68 derived an all-atom knowledge-based
scoring function from a nonredundant database of
500 high-quality experimental protein structures. All
atoms were classified into 167 atom types as done pre-
viously in Samudrala’s RAPDF KB potential.69 A dis-
tance histogram was built separately for each pair of
atom types and transformed into a potential of mean
force according to Lu and Skolnick70 formalism. In
the next step, the potentials were approximated with a
spline polynomial. Finally, the knowledge-based po-
tential was combined with classical molecular me-
chanics force fields: GROMOS96, OPLS-AA, AM-
BER99, and ENCAD just by replacing the relevant
nonbonded terms. The MESHI package71 (see below)
was used to control the refinement process and con-
duct the gradient-based minimization of the energy
function.

MESHI optimization routines can be also ac-
cessed using the Beautify program, devised to refine
Cα models resulting from various fold recognition
and comparative modeling techniques. Starting from
alpha carbon coordinates, the program reconstructs
all the necessary main chain atoms and missing frag-
ments (e.g., loops) and refines the model in its back-
bone representation. Finally, the side chains are added
and the structure is subjected to the second refinement
step. Both the refinement steps are done by direct
gradient-based energy minimization according to the
MESHI knowledge-based force field.

CRITICAL ASSESSMENT OF THE
PERFORMANCE OF REFINEMENT
METHODS
A few papers attempted to compare physics-based
refinement methodology with its knowledge-based
counterpart. Summa and Levitt72 performed in vacuo
energy minimization to compare the performance
of various physics-based force fields: (OPLS)-AA,73

AMBER99,74,75 GROMOS96,76 and ENCAD77 with
a statistically derived KB potential. The authors found
that the knowledge-based potential performed best
and refined almost all proteins toward the native
structure. AMBER99 was found to be the second
best. In general, physics-based potentials moved mod-
els away from the native state, thus making the re-
finement results worse than the initial conformations.
These findings can be explained at least to some extent
by the fact that the in vacuo environment is artificial
for proteins and a native structure may no longer be in
its global free energy minimum. In vacuo conditions,
therefore, favor knowledge-based force fields that
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implicitly include solvent effects, for example, en-
coded in distance distributions observed in crys-
tal structures. In a subsequent study, Levitt and
coworkers78 tested the role of a solvent in protein
structure refinement. Implicit solvent GBSA combined
with an all-atom OPLS-AA force field has been com-
pared with a knowledge-based approach. The energy
of 729 near-native models collected for 75 differ-
ent proteins was optimized according to a limited-
memory variant of a BFGS minimization algorithm.
Overall, GBSA performed better than KB for 30 of
the 75 proteins. However, GBSA moved 29 proteins
away from the native state, whereas KB worsened
just 3.

The refinement of a native structure is an im-
portant test for a given methodology that enables de-
coupling conformational sampling efficiency from en-
ergy function performance. Misura and Baker79 tested
the Rosetta refinement protocol on a set of 10 small
proteins and concluded that the sampling protocol
appears to be the main limitation. Although their
backbone and rotamer search protocols were rea-
sonably successful in recovering rotameric states in
the native backbone or in refining a perturbed native
structure, the performance in refining de novo models
was considerably worse. The refined de novo mod-
els feature poorer packing and consistently worse at-
tractive components of Lennard–Jones energy. Some
of these barriers, however, may result from the fact
that the sampling is conducted in internal coordi-
nates (Phi,Psi,Omega, and Chi angles) while keeping
bond lengths and planar angles fixed to idealized val-
ues. Nevertheless, the authors showed improvement
in crmsd distance for all the 10 test cases during the
refinement process.

LESSONS FROM THE TWO LATEST
CASPs—IS THERE ANY PROGRESS?

Refinement Category in CASP
In the last two editions of CASP, one of the categories
was protein structure refinement. In this category, or-
ganizers suggested starting models for a small set of
targets. Moreover, in most cases, predictors were in-
formed which fragments of models needed significant
improvements (for an example, see Figure 3).

In the extensive assessment of CASP8 results,80

the authors suggest that refinement methods should
primum non nocere—first do not harm. In other
words, methods can be judged as successful if the
quality of the model returned by the method is higher
than the quality of the starting structure. Results from
last two CASPs show that this criterion is really chal-

FIGURE 3 | Results of TR592 refinement from the CASP9
refinement competition. Top: Three superimposed structures are
shown—native in blue, starting model in gray [coordinate root mean
square deviation (crmsd): 1.26], and the best model in magenta
(crmsd: 0.96). Significant improvement from the starting model can be
observed in the loop region marked with a circle. It is noteworthy that
this region was pointed out by the competition assessors to the
participating groups as one of the main areas for refinement. Bottom:
In the same size and orientation as mentioned above; all the predicted
models (designated by participating groups as the best) are shown in
magenta, together with the native in blue (a few heavily mismatched
models were removed for clarity).

lenging. The main reason is very high accuracy of the
starting models. As shown in Figure 4, the majority of
models have crmsd to the native structure below 2 Å.
Starting models given by organizers are chosen among
the best submitted for the regular structure predic-
tion CASP category. Obviously, the groups, which
provide the best models, likely perform model opti-
mization before submitting their results. Therefore,
the real goal for the participants in the refinement

486 Volume 2, May/ June 2012c© 2012 John Wi ley & Sons , L td .



WIREs Computational Molecular Science Optimization of protein models

FIGURE 4 | Distribution of coordinate root mean square deviation
(crmsd) of the starting structures for the refinement in CASP8 and
CASP9. The majority of models are close to the native structure.

category was to improve structures which have been
already refined.

CASP Results
MacCallum et al.80 used many metrics (such as
GDT TS, GDT HA, GDT SC, MolProbity, MCRS,
etc.) to measure changes in the accuracy of result-
ing structures in the CASP8 refinement category. For
most of the metrics, there were more failures than im-
provements. Obviously, this is a general statement for
the entire set of the structures submitted and does not
show differences between the groups. In fact, some of
them performed much better than others, but only a
few groups were able to improve the average scores
of the structures.

Here, we present results from CASP9 based on
the scores provided by CASP organizers.81 Figure 5
shows the distribution of crmsd differences between
structures before and after refinement ("crmsd). The
majority of structures obtained after refinement are
worse than the starting ones (positive "crmsd). How-
ever, in most cases the absolute "crmsd value is very
small (below 0.1 Å). Specific information for each
group is presented in Figure 6.

Successful Methods
Table 2 shows the best groups from the last CASP
according to the combination of scores used by CASP
assessors. Only two groups (Baker, Levitt/KnowMIN)

FIGURE 5 | Distribution of coordinate root mean square deviation
(crmsd) differences between structures before and after refinement,
obtained during the CASP9 experiment. Green color (negative
"crmsd) means improvements and red (positive "crmsd) means
worsening of the original models.

FIGURE 6 | Distribution of "crmsd (coordinate root mean square
deviation) for each method. Successful results are below the red
dashed line. Only for eight of 34 methods have the sets of the resulting
structures mean "crmsd lower than zero.

were able to repeat their success from the CASP8 re-
finement experiment and were ranked among the top
four. The two best groups (Baker, Foldit)82,83 used
the Rosetta modeling approach, summarized above.
Other successful methods employ MD (SchroderLab)
or direct energy minimization of the knowledge-based
potential of mean force (Levitt).84 In CASP9, the
KnowMin group (previously, Levitt) extended their
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TABLE 2 Top Ranked Groups from CASP9 Refinement Category

Rank Group Name Group Members Methods CASP8 Rank

1 Baker J. Thompson, T.J. Brunette, D.E. Kim,
F. Khatib, D. Gront, F. DiMaio,
R. Wang, R. Vernon, B. Kim, J. Pei,
S. Cooper, M. Tyka, D. Baker

Monte Carlo minimization of
Rosetta full-atom energy

1

2 Foldit F. Khatib, S. Cooper, J. Thompson,
I. Makedon, J. Barbero, Z. Popović,
D. Baker, Foldit players

Minimization of Rosetta full-atom
energy; online player
modifications

New group

3 Knowmin G. Chopra, M. Levitt Energy minimization (knowledge-
and physics-based potentials)

4 (previously
LevittGroup)

4 SchroderLab A. Wojtyczka, G.F. Schröder Molecular dynamics
(physics-based potentials)

New group

procedure using a combination of knowledge- and
physics-based potentials.

It should be noted that differences between the
top-ranked groups are not statistically significant and
strongly depend on the metrics used for evaluation.
This is a consequence of the character of the task,
which aims at subtle changes of structures and the
arbitrary character of all metrics which focus on dif-
ferent features. Moreover, the limited number of tar-
gets (CASP8—12, CASP9—14) does not allow for
statistically significant analysis of the results and for
changing them between the last two CASP editions.
However, we agree with Ken Dill, assessor of the re-
finement category, who said during the last CASP con-
ference that if there was any progress it was little. See
also Table 3 for the list of example software (online
servers and stand-alone software) for protein struc-
ture optimization.

COMPUTER OR HUMAN
OPTIMIZATION?
The arbitrary partitioning of the refinement problem
into separate concepts, implemented as distinct sub-
routines or protocols, attempts to utilize the expe-
rience of human experts in an automated fashion.
So far, however, no one succeeded in substituting
a human with a computer. The FoldIt82 refinement
method goes in the opposite direction: the computer
is substituted with a human. The program itself re-
sembles a video game. The player can move around
a particular residue or a secondary structure element
dragging them with a mouse. The computer’s role is
to quickly minimize all-atom energy according to the
Rosetta scoring function. Interestingly, many players
lack any biological training and they play FoldIt like
any other video game. Despite this, they can achieve

results comparable to or even better than human ex-
perts or specialized computer programs. In fact, dur-
ing the ninth round of CASP experiment, FoldIt was
the third-best performing group,92 as ranked by an
overall score averaged over the best (cherry-picked)
model for each target. This shows that the currently
used algorithms can still be improved.

CONCLUSION
Examples from the recent literature show that the dif-
ficulty of the structure optimization problem grows
very fast with the distance between the starting con-
formation and the true answer. Some authors sug-
gest that the problem is, in general, unsolvable for
structures more than 2–3 Å apart from the native.66

Reaching such a high accuracy is already a great chal-
lenge for de novo modeling methods and, if achieved,
it should be considered a very successful case rather
than a typical result. Extending the radius of conver-
gence of the structure optimization methods is proba-
bly the most important direction for future improve-
ments. As already discussed, optimization protocols
comprise primarily two components: an energy func-
tion (i.e., scoring) and a sampling method, which de-
fine two areas of research. The two, however, strongly
depend on each other and should not be considered
in separation. For instance, the optimization of a pro-
tein molecule in its all-atom representation enables
one to account for subtle energetic effects93 and to
accurately describe side-chain packing. At the same
time, the densely packed system of atoms represented
by spheres that strongly repel one another at close
distances imposes a great challenge for the sampling
method. The excluded volume term that is often ex-
pressed as r−12 renders a great number of local min-
ima on the energy landscape. Therefore, even when
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TABLE 3 Example Software for Protein Structure Optimization

Name Address Comments

Online Servers Kobamin http://csb.stanford.edu/kobamin/ Direct energy minimization using knowledge-
based potentials84 (see section KnowMIN in
the text)

FG-MD http://zhanglab.ccmb.med.umich.edu/FG-MD/ MD-based algorithm. FG-MD identifies analogous
fragments from the Protein Data Bank (using
TM align85), which enables deriving spatial
restraints.

Protein
Refinement
Server

http://silvio.cs.uno.edu/proteinrefinementserver/ Near-native structure refinement using
knowledge-based potentials.72

FoldIt http://fold.it/portal/ Online game,82 which uses Rosetta full-atom
energy and allows manual modifications.

Stand-Alone
Software

Rosetta http://www.rosettacommons.org/ A complex package60 for protein structure
prediction, which supports several structure
refinement protocols (see the text for details).

Modeller http://salilab.org/modeller/ Modeller86 is a state-of-the-art protein structure
modeling tool, which performs inter alia de
novo modeling of loops87 and optimization of
protein structure models with respect to a
flexibly defined objective function.

PLOP http://www.jacobsonlab.org/
plop manual/plop overview.htm

Part of the PRIME package. PLOP is a program for
protein modeling using all-atom energy
functions, which employs truncated Newton
minimization, side-chain optimization,88,89

loop prediction,90 and the prediction of helix
positions.91

Beautify http://www.cs.bgu.ac.il/∼meshi/ Part of the MESHI package.71 The program
enables structure reconstruction (backbone,
side chains) and refinement (direct energy
minimization according to knowledge-based
energy function).

MD, Molecular dynamics.

a particular scoring function places the native con-
formation in the global minimum, it is quite likely
that the sampling process will get trapped before
reaching it.79 Apparently, FoldIt players manage to
avoid it by manually navigating the conformational
search.

Finally, it is worth noting that in all bench-
marks, as well as during the CASP experiments, the
results of the optimization process are compared to
the experimental structure, most typically established
by an X-ray diffraction experiment conducted in cryo-
genic conditions. To some extent, this explains the
favorable results by knowledge-based methods, ob-
tained in a process of aggressive minimization of a
scoring function. The function that is most commonly
derived from already solved high-resolution protein
structures. The dynamic aspect of a structure is com-
pletely missing in this picture. However, even in their

native state, proteins access many different conforma-
tions and importantly their motions are related to the
function they perform. Characterization of the pro-
tein structural dynamics, thus linking the static struc-
tures with their function, is one of the major chal-
lenges in biology, and computer simulation methods
are already a standard tool for that purpose. Although
contemporary physics-based force fields are rough ap-
proximations of the real potential energy function,
current estimations are that they are able to capture
the meaningful aspects of protein dynamics94 and the
same is possible using a knowledge-based force field
approach.95 Hopefully the next generations of meth-
ods will optimize a protein as an ensemble rather than
as a single conformation. This would provide us clues
about function but also give some estimation of en-
tropy for competing energy minima and help in the
final model selection.
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