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Lattice Representations of Globular Proteins: How Good

Are They?
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Using a number of different lattice models of proteins, the problems introduced by the discretization of a .
protein backbone are discussed and examples of the most typical errors arising in low coordination number
lattices presented. The geometric properties of different lattices used in the literature are compiled, and for
all of them the resulting a-carbon models of proteins are described in detail and compared to the original
structures obtained from experiment. € 1993 by John Wiley & Sons, Inc.

INTRODUCTION

Recently, simplified models of protein structure have
become increasingly popular.! It is now clear that
methods employing a detailed, all-atom description
of protein structure are not able to describe long-
time processes such as the folding of even small
single-domain proteins.®> One natural way to reach
longer time scales is to reduce the number of degrees
of freedom that are explicitly treated. This can be
achieved by ignoring the presence of all backbone
atoms except the a-carbons, ignoring the side chains
entirely, or replacing them by entities with a smaller
number of degrees of freedom, such as the side-chain
center of mass>? Further, interactions between
picces of the resulting reduced representation of the
chain are modeled by potentials of mean force; thus,
the solvent is implicitly rather than explicitly in-
cluded.”" The most drastic of these simplifications
occurs in lattice models of proteins. where in addi-
tion to simplifving the description of the backbone
and the amino acid side chains their positions are
restricted to a discrete set of possibilities, i.e., the
vertices of a given specified lattice.'>> Such a de-
scription offers many advantages, which together re-
sult in a substantially increased speed of calculation
over more conventional techniques. Discretization
reduces the available conformational space and, at
the same time, can smooth the free energy surface,
thereby eliminating a number of local hills and val-
levs present in an off-lattice representation. Most
calculations can be carried out using integer arith-
metics, and it is possible to precalculate many time-
consuming operations. Overall, over a 100-fold
speedup, as compared to the traditional molecular
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dynamics simulations, on equivalent reduced models
can be obtained. Thus, routine simulations of long-
time processes, such as protein folding, become fea-
sible.®

On the other hand, protein structures in a lattice
representation are obviously distorted in compari-
son to the real structures, and it is not clear what
level of similarity must be achieved for the model
to be useful. Therefore, in the present contribution
we analyze and compare several different lattice
models of proteins to understand the nature of the
differences between discrete and continuous de-
scriptions of protein structure and evaluate various
levels of accuracy obtained in the different types of
lattice models.

The first argument in favor of using a discrete
model of protein structure comes from the regular-
ities observed in the local structure of the protein
backbone (Fig. 1). The distances between consecu-
tive Ca—Ca atoms are sharply peaked around 3.8 A
(with a small peak around 2.95 A for proline resi-
dues). The angle between three consecutive Ca at-
oms has a sharp maximum peaked at 90° and a more
diffuse one at around 120, and the tetrahedral angle
between four Ca-atoms has one sharp peak around
—130° and one broad peak centered at 20° with a
secondary peak around 125°. The peaks correspond
roughly to the threefold rotational symmetry around
the central Ca—Ca bond* (see also Fig. 1). These
values result from the specific geometry of the pep-
tide bond and strongly suggest that a discrete rep-
resentation with the correct set of symmetries
should be able to closely mimic the geometry of the
protein backbone.

Thus far, we have focused on the intrinsic geo-
metric properties of various lattices that have been
used for the discretized representation of protein
chains. To go further, we must develop criteria to
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Figure 1. Local regularities in protein structures. (a). Distribution of
Ca—Ca distances. (b). Distribution of Ca—Ca—Ca angles. (c). Distri-
bution of Ca—Ca—Ca—Ca torsional angles.

compare and evaluate the similarity of the different
lattice models of proteins relative to their respective
crystallographic structures. The most commonly
used measure of structural similarity is the rms dis-
tance between equivalent Ca positions after optimal
superposition. Here, because the real structure and

its model are compared, the identification of equiv-
alent residues is trivial and the problem has a well-
defined solution. Another criterion that will be used
throughout this article is based on the local orien-
tation of the chain, as measured by the direction of
the bisector of the Ca,.,-Ca,-Ca,., angle (Fig. 2).
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Figare 2. Angular similarity between two structures.
Definition of the bisecting vector.

The local or angular correlation of the model and
the real protein is crucial both in calculating the
energy for simplified protein models as well as in
rebuilding the full atom structure from the simplified
description. Both problems will be discussed in de-
tail in subsequent publications.

Note that there are several features of lattice
models of protein structure that make them different
from continuous representations of proteins. These
are outlined below.

_1..The fattice representation depends very much on

the orientation of the principal axis of the lattice.
For instance, an element of the secondary struc-
ture might be described well if its axis coincides
with one of the symmetry axes of the lattice; oth-
erwise, it might be poorly described. As a result,
certain supersecondary structure elements, such
as supertwisted helical hairpins, and most of the
larger proteins. where different secondary struc-
ture elements can appear with several different
mutual orientations, cannot be fitted to some lat-
tices with results as good as certain small mole-
cules that are often presented as examples.!>¥

. Despite the apparent similarities between the lo-
cal regularities of the protein backbone and the
lattice chain, small differences can accumulate
quickly and cannot be corrected due to the in-
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flexibility of the lattice. This may result in a lattice
structure that follows the backbone trace, but its
local structure might be essentially random.

3. Regularities of the protein backbone, such as il-

lustrated in Figure 1. are dominated by the sta-
tistics coming from the secondary structure ele-
ments. Other fragments of the protein structure,
such as some types of turns. may have different
bond lengths and angles that cannot be repro-
duced on the lattice. Due to this problem, the
Jattice structures may have uneven quality, with
overall good rms, but at the same time it is grossly
incorrect in some regions.

These peculiarities of the discretized description
of proteins will be studied in detail for a number of
lattices.

METHODS

We begin by defining a consistent way of describing
any lattice model. In a cubic lattice, each point is

described by a set of three integer indices, giving its

distance in lattice units along the three principal
Cartesian axes (x,¥,2) from an arbitrarily chosen or-
igin. The smallest distance between two points along
any principal axis is taken to be unity. Now, every
ordered set of points (Which would usually be called
a chain) can be described either by listing all its
points or the starting point and then the sequence
of vectors between the consecutive points of the
chain. We can restrict ourselves to sets of points that
are joined by vectors fulfilling certain criteria.
Among the models presented here, sets of vectors
(called basis vectors) used to build the chain could
contain as few as 6 vectors or as many as 90. Dif-
ferent lattice models differ by the sets of basis vec-
tors. and when we say “different lattices™ this really
means “lattice models built using different sets of
basis vectors.” For instance, we could study chains
joined only by the vectors of length V2 in lattice
units, i.e., the basis vectors of the type [1,1,0] plus
all sign combinations and all possible permutations
(12 in total: [1,1,0], [-1.10]. [1.—10}, [-1,-10],
(0.1}, [0,-11), [01,-1), ([0,-1,—1} [1,0,1],
[-10,1], [1,0,— 1], and [-1,0.-1]). This particular
choice limits the possible location of chain points
to a subset of the original cubic lattice that is called
the face-centered cubic (fcc) lattice. Some sets of
basis vectors have specific names (cubic, diamond,
fce, bee, etc.) while others do not. In each case,
listing all basis vectors constitutes a unique and suf-
ficient definition of the lattice representation of the
chain.

The actual physical length of the lattice unit is
calculated by comparing the length of the basis vec-
tor in lattice units to the mean Ca—Ca distance
(about 3.8 A). For instance, the length of the {1,1,0]
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Table I. Compilation of properties of variousJattices.

Basis vectors ~ Lattice unit (A) No. vectors Name Ref.
100 3.80 6 Cubic 31
110 2.69 12 fee 15
111 2.19 8 bee 15
1 2.19 §(4) Diamond 12, 20
200.110 19 18
220.111 1.9 14 18
210 1.7 24 Knight walk 32
200.211,110 19 42 Ext. FCC 18
210211 1.7 48
210.211.111 1.7 56 Hybrid 25
310.311.300.221.220 12 90 Ultra 26
1+ 081 8(36) Diamond 33

aVectors are divided into two separate groups: The odd vectors are taken from one group and the even ones from
the second. There are eight vectors in total (as in the 111 lattice), but only four are available for any given point.
“n this particular representation, Ca. C, and N backbone atoms are represented on the lattice: therefore, there are

4 = 3 » 3 possibilities to reach from one Ca atom to the next.

vector equals\/§ lattice units. To make it equal to
the Ca—Ca distance, the lattice unit must equal 2.69
A (38/V2: see Table I for the length of the lattice
units in other lattices). In this article, we discuss
several commonly used sets of basis vectors that
closely match the regularities of the protein back-
bone. Most have already been used or suggested by
different authors to build models of protein struc-
ture.

A summary of some selected properties of differ-
ent sets of basis vectors used for building lattice
models of proteins is presented in Table L. In each
case, the type of the basis vectors is given, and then
all possible permutations and sign combinations
must be added, as explained above for the case of
the ([110]) lattice. The diamond lattice is built from
eight [1.1.1}-type vectors, but only the combinations
of pairs of basis vectors that produce a tetrahedral
bond angle (109.5°) are allowed (so, for instance. the
[1.1.1] vector might be followed by [1,1,- 1] but not
[1.=1,—1]). This restriction limits the number of
possible paths leading from any single point to four
(including the one leading to this point). On the other
hand, in the full (all heavy atom) backbone diamond
lattice only every third point is equivalent to a Ca
position. So, when we start from any particular Ca
atom there are 4 possible N positions (three if we
exclude the path leading to the Ca under consider-
ation), for each N atom there are 3 C positions (re-
versal is not allowed), and again there are 3 Ca po-
sitions for each C position, bringing the total of Ca
neighbors of the first Ca atom to 36 (27 for the Ca
atom in the middle of the chain. In some cases. all
the basis vectors have the same length {([100]),
([110]). ({111]), diamond and ([210]) lattices}. while
in others combinations of vectors of different lengths
are allowed {([200]. [111]), ([200], [110]),({200}.(110],
[211}), ([210), [211]}, [111]) and ([310], [311]. [300],
[221), [220]) lattices}. In such cases, the first vector
that is listed is used to define the actual length of

P

the lattice unit, as discussed above. The different
lengths of the basis vectors do not reflect the vari-
ation of the Ca—Ca distances in real proteins: in-
stead, they are introduced to increase the flexibility
of the lattice so as to reduce the accumulation of
errors in the construction of the model protein back-
bone (see the discussion below).

Three different proteins of a moderate size were
chosen for the analysis. They are (the proteins are
identified by their PDB* abbreviations): myoglobin
(1mba), triose phosphate isomerase (2ypi), and plas-
tocyanin (lpcy). They represent “three different
structural classes (all a. mixed a/B3 and all B, re-
spectively) and are sufficiently large that for any axis
orientation some secondary structural element is in
an unfavorable orientation. Rop protein (1rop). frag-
ments of bacteriochlorophyll-A protein (3bcl. resi-
dues 39-69 and 39-50). and myohemerythrin (2mhr,
residues 40-65) serve as examples of supersecon-
dary and secondary structure fragments (« and 8
hairpins, a 8 strand, and an a helix, respectively) and
crambin (lcrn) is used to compare the present re-
sults to those obtained in previous studies.

For a given lattice, the lattice representation of a
particular protein structure is built by one of the
following three procedures:

1. The lattice chain is built step by step, starting from
the lattice position closest to the position of the
first Ca atom position. Subsequent lattice Ca po-
sitions are added by choosing the lattice position
closest to the next protein Ca, subject to the con-
straint that the new position can be connected to
the existing chain by one of the basis vectors
allowed in the particular lattice model. The chain
is not allowed to intersect or overlap.. This pro-
cedure is strictly deterministic and depends solely
on the orientation of the protein structure being
fitted. It does not produce the best possible fit,
as a decision that is optimal at the beginning of
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Table II. Quality of protein models in different lattices.

Lattice a B aa BB lern Imba 2ypi Ipey
100 1.7 25 1.9 28 2.4 27 3.3 4.3
110 14 0.7 1.5 1.6 1.6 19 2.0 3.3
111 1.6 2 20 19 2.0 24 28 29
Diamond 34 12 38 23 3.2 4.0 3.8 38
200,110 1.1 14 1.3 15 14 1.5 240 1.9
200,111 12 10 1.4 13 1.4 1.6 1.9 1.8
210 1.1 07 12 09 2 1.5 15 1.2
Ext. FCC 1.0 08 1.1 1.0 1.0 12 1.1 1.2
Hybrid 211 0.7 06 09 0.8 08 1.0 1.0 1.0
Ultra 311 0.5 03 0.6 0.6 0.6 0.7 0.7 0.7
Backbone 10 05 12 1.0 1.2 12 15 15

[

rms difference in A between the lattice model and crystallographic Ca coordinates.

chain construction may result in a poorer struc-
ture later in the building process. In fact, for low-
coordination lattices this procedure sometimes
reaches a dead end (the chain cannot propagate
without violating excluded volume) and the fitting
procedure must retrace its steps to find another
solution.

. A lattice chain of appropriate length and random

conformation is built. The penalty function is cal-
culated as the sum of the squared distances be-
‘tween the lattice Ca positions and the equivalent
real Ca positions, which are not allowed to move.
Sets of one, two, and three atom movements are
automatically constructed from the set of basis
vectors by the program, and simulated annealing
is performed to minimize the penalty function.
The result depends both on the parameters used
in the minimization and the orientation of the pro-
tein molecule.

3. This approach is similar to the second, but here

the rms distance between equivalent Ca positions
after optimal superposition is used as a penalty

function. As in 2, simulated annealing is per-
formed to minimize the penalty function. The re-
sults depend on the parameters used in the min-
imization, but do not depend on the orientation
of the protein molecule.

The third approach is used to obtain the best pos-
sible models in a given lattice, as reported in Table
II. The second algorithm is used to obtain best
models for a given orientation of the protein struc-
ture. such as illustrated in Figures 3 and 4.

In both cases, the best fits are obtained by using
the first procedure to generate the initial confor-
mation for use by the second or third procedure. As
the lattice fits are obtained by simulated annealing,
there is no guarantee that these are the.lowest pos-
sible values. However, the same values were ob-
tained in a number of independent minimizations,
so there is a reasonable assurance that the results
presented here are correct.

The excluded volume requirement is satisfied only
for the Ca atoms, and no provision is made for the

Figure 3. Distribution of rms of the best lattice fits to the native crambin
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Figure 4. Example of the ([110]) lattice fit (solid line)
to a B hairpin structure, (dotted line) as seen in: (a) from
the side: (b) from the top.

introduction of side chains. It is possible to introduce
side chains into lattice models and full side-chain
libraries for the ([210]), the hybrid ({210}, [211]},
[111]), and the ultra ([310]. [311], [300], (221], [220))
lattice have been built and used in folding simula-
tions.22¥>7 However, the detailed analysis of the lat-
tice structure with side chains. including the com-
parison of interaction patterns. goes bevond the
scope of the present article, and will be presented
in a separate publication.

RESULTS

The combination of procedures 1 and 3, as described
above, was used to find the best possible lattice fit
to the 8 test structures using 12 different lattices.

Table III. Quality of protein models in different lattices.
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The results, summarized in Table II, give an indica-
tion of how close a given lattice type can describe
the protein structure. There is an obvious correlation
between the number of available basis vectors and
the quality of the fit, with the 90-vector “ultra” ({310},
(311}, [300], {221], [220)) lattice giving structures with
the lowest rms. The cubic and diamond lattice (with
six and four basis vectors, respectively) fits have the
worst overall quality. Still. all of the lattices do a
good job of describing the overall protein structure,
with clearly recognizable topology, domains, and
some secondary structure elements.

An important indicator of the lattice quality in de-
scribing protein structure can be obtained by com-
paring results for small protein fragments to that of
larger proteins. For all lattices, it is more difficult to
fit larger structures, but a few of them lose so_much -
detail as to become almost unacceptable for larger
proteins. This problem results from two effects dis-
cussed previously:

1. The dependence of the lattice structure on the
relative orientation between the lattice principal
axis and the protein being fitted, as discussed in
the introduction. This effect is better illustrated
in Figure 3, where the distribution of the rms of
the best fit is plotted for the ([200], (110]) and the
hybrid ([210}, [211], [111]) lattices for all possible
rotations of the original crambin crystal structure
around Euler angles with the discrete steps of 10°.
Here, procedure 2 (see above), where the target
protein structure is not allowed to rotate. was
used to generate lattice models. It is immediately
obvious that these two lattices behave differently.
Both lattices seem to be of acceptable quality on
the basis of the data shown in Tables II and IIl.
But, as seen in Figure 3. structures of such quality
are obtained only for the few percent of the total
number of orientations of the ({2,0,0]. {1,1,0]) lat-
tice, and for some orientations the lattice fit is
bad.

2. In addition, some lattices can describe some types
of secondary structures better than others. For
instance, the ([100]) (cubic) lattice strongly favors
« helical structures, and the diamond lattice does

Lattice a B aa BB lern Imba 2ypi Ipcy
100 37 14 51 36 66 69 78 85
110 23 14 36 68 R5} 42 55 76
111 42 15 42 49 76 52 68 80
Diamond 69 14 3 107 85 70 89 97
200,110 21 15 43 35 11 34 48 47
200,111 24 14 33 66 42 34 55) 44
210 i7 16 21 40 30 40 40 35
Ext. FCC 16 19 20 25 26 20 29 32
Hybrid 211 16 21 15 25 20 20 27 23
Ultra 311 8 12 12 17 16 4 17 4
Backbone 26 29 37 58 51 36 55 43

Local similarity of lattice models of proteins as measured by (©). See the text for additional details.
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a better job of fitting B structures (see Table II).
Thus. these lattices can achieve relatively good
fits for short proteins of the appropriate type. For
larger, mixed-motif proteins. this advantage dis-
appears.

The crucial question that arises at this point is
how to interpret the values displayed in Table IL.
When comparing real proteins, an rms on the level
of 3.0 A between 70" of the side chains would be
regarded as close similarity > However. here we are
comparing real proteins to artificial structures, de-
void of many features that are taken for granted in
real proteins and possessing other features that may
not be typical of proteins. Therefore, we introduced
another measure of similarity between the real and
the model structure. First, for each Ca atom the
vector that bisects the angle formed by the three
consecutive Ca atoms is constructed. It gives an in-
dication of the direction of the side chain and for
real structures is close to the Ca—Cp vector (the
Cp positions are not included in the Ca lattice struc-
tures). Later, the angle © between such vectors for
the real and model structures is calculated, and the
mean value of this angle (@) is presented in Table
[1I. The average value for two uncorrelated chains
is 80°, and values larger than 90° indicate anticor-
relation and values smaller than 90° increasing cor-
relation. If the directions of bisector vectors of the
model structure are not correlated with the appro-
priate directions in the real structure, this means that
the structural elements in the model have lost their
hydrophobic/hydrophilic “faces,” and despite the
model backbone having the same topology the side
chains have random orientations.

Table Iil presents the mean angular correlation
(@) for structures with the best rms, obtained with
the procedure described previously. The results in
Table I1I were calculated for the same structures as
presented in Table II, and the angular correlation
was not used in the fitting procedure. For the high-
correlation lattices, it is still possible to improve the
‘angular correlation with little price paid at the rms
level. It is not possible to do the same for most low-
coordination lattices. such as the cubic and diamond
lattices, which therefore must be completely dis-
missed for building higher-quality models.

As expected, the higher coordination number lat-
tices perform much better, and the difference be-
tween the native and the lattice protein can reach
10-20°. For the secondary structure fragments, par-
ticularly for the B strand, almost all lattices can pro-
duce a good model. but already at the level of two
adjacent elements of secondary structure the quality
of the fit gets much worse. This effect is much more
pronounced for low-quality lattices. At the rms level,
it may seem that it is much easier to reproduce the
B structures, but as seen in Table Ill these seemingly
good fits have severe orientation problems, with g
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strands in a B sheet facing each other instead of
being parallel to each other (sce Fig. 4).

For the a helices, the main problem is the strong
difference between the best fit obtained for the op-
timal orientation of the lattice axis relative to the
helix direction and fits obtained for other orienta-
tions. Again, this problem is much more pronounced
for the low-coordination lattices. This is illustrated
in Figure 5a for the ([110]) lattice. Here, the best fit
(left-hand side) gives a reasonable looking helix (rms
of 1.7 A and angular correlation of 37°). For the worst
orientation (right-hand side), the lattice represen-
tation deteriorates to the point that the model struc-

Figure 5. Examples of lattice fits (solid line) to a real
« helix (dotted line) (a). Simple cubic lattice. (b). 210
lattice. (¢). Hybrid lattice. For each lattice, the left-hand
side shows the best lattice fit and the right-hand side the
worst lattice fit.
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ture (rms of 2.5 A and angular correlation of 55°) is
not even helical. As illustrated in Figure 4b. an in-
termediate-quality lattice, like the ([210]) lattice. on
going from the best (1.1 A, 17°) to the worst (2.0 A,
45°) fit loses its regularity but retains the chiral char-
acter of the helix. At the other end of the spectrum,
as seen in Figure 4c, the hybrid lattice with both the
best (0.7 A and 16°)- and worst (1.2 A, 22°)-fit models
are helical and regular.

CONCLUSIONS

In this article, we examined a number of different
proteins and protein fragments in the context of a
set of discretized models of protein structure. A se-
ries of lattices of increasing fidelity to protein struc-
tures have been compared. Not surprisingly, we dem-
onstrated that by increasing the number of basis
vectors available for backbone construction the lat-
tice model of protein structure can be made as close
to the real protein structure as required. By all mea-
sures of structural similarity, high-coordination lat-
tices employed here can describe protein structure
with a high level of accuracy.

The simplest lattices, such as the cubic or the
diamond lattice, can describe the protein structure
on the level of 34 A rms. At this level, the lattice
model has the correct overall shape and tdpology,
but local regularities, such as the hydrophobic/hy-
drophilic faces of secondary structure elements. are
almost completely lost. For most orientations. it is
not possible to represent secondary structure ele-
ments other than the one favored by the particular
lattice. for instance, a 8 sheet for the diamond lattice
and an « helix for the cubic lattice.

On the next level, lattices such as the bee and fee

can describe some proteins and protein fragments
with high fidelity, yet their overall level of accuracy
is closer to 2-3 A, with serious problems for some
orientations and some proteins.
_ The general level of description improves to 1-2
A for the ([200], [111]), ({200}, [110]), ([200], [211],
[111}), and [210] lattices, in order of increasing qual-
ity. However, for some orientations the secondary
structure still loses its regularity and the quality of
the fit visibly deteriorates with increasing size of the
molecules.

It is only at the level of the all-backbone atom,
diamond lattice, the hybrid ({210}, [211], [111]). or
the ultra ([310], [311], {300}, [221], [220]) lattice that
one has a correct level of secondary structure de-
scription even for the most unfavorable orientation
of the original protein structure. Protein models built
using these lattices reproduce such details as the
twist of B sheets, the preferred a-helix/a-helix pack-
ing angles, etc. The ultra lattice improves the quality
of the model even further, with such details as the
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hydrogen bond pattern in secondary structure ele-
ments described correctly.

In general, it is number of the basis vectors that
is most important for the quality of the lattice protein
model. The main reason for this is that the differ-
ences between the lattice model and the actual pro-
tein accumulate quickly, and it is the ability to relax
these differences that ultimately decides the quality
of the lattice model.

It is, of course, possible to design even higher-
order lattices that could describe protein structures
even closer. The accuracy level presented by the
hybrid ({210], [211}, [111]) lattice is good enough for
most demanding applications, including the de novo
folding of simple motif proteins.> The ultra lattice

((310], [311], {300], [221]. [220])22" has been used -

in the refinement of the folded structures, with’the
possibility of predicting structures on the level of
2.1-3A.

Thus, we conclude that after deciding about the
level of accuracy necessary for any particular pur-
pose one can always find a lattice that can fulfill the
necessary requirements. But, when using lattice
models one always has to be aware of certain prob-
lems specific to the lattice representation: the de-
pendence on the orientation in space, the error ac-
cumulation in some regions of the protein. and the
intrinsic lattice preference for certain types of sec-
ondary structures. It is only in the limit of high-
coordination lattices that these problems are ef-
fectively eliminated, and one can use a lattice
representation of protein structure with confidence
that the derogatory effects of discretization are neg-
ligible and their advantages can be safely exploited.

This brings up the important question of how
much the results of the lattice simulations reported
in the literature are affected by the effects discussed
here. For simulations in which the folding pathways
are studied, the effects are negligible. In fact, the
results even do not depend on whether the system
is on lattice or not.™ In these simulations, the target
structure was known in advance and the type and
mutual orientation of secondary structure elements
was known to be compatible with the lattice. Also,
the local secondary structure was specified in ad-
vance by defining the set of preferred local Ca—Ca
distances, and this helped enforce the regularity of
the local secondary structure—where deficiencies
of the lattice are most severe. If, however, no infor-
mation about the correct secondary structure is pro-
vided and the final structure is not known in ad-
vance. some of the lattice deficiencies become
crucial. When secondary structure formation de-
pends on the details of local interactions. the quality
of the representation becomes more important. If
the existence of the given secondary structure ele-
ment depends on lattice orientation, it might not be
possible to describe the final structure at a low-co-
ordination lattice. These problems motivated the de-
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velopment of the high-coordination lattices, where,
as illustrated in this article, most of them are elim-
inated.
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