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Application to Mutants of the GCN4 Leucine Zipper

Michal Vieth 1, Andrzej Kolinski 1,2, Charles L. Brooks, III 1 and
Jeffrey Skolnick 1*

1Departments of Molecular Using a simplified protein model, the equilibrium between different
Biology and Chemistry, The oligomeric species of the wild-type GCN4 leucine zipper and seven of its

mutants have been predicted. Over the entire experimental concentrationScripps Research Institute
10666 N. Torrey Pines Road range, agreement with experiment is found in five cases, while in two cases

agreement is found over a portion of the concentration range. These studiesLa Jolla, CA 92037, USA
demonstrate a methodology for predicting coiled coil quaternary structure2Department of Chemistry and allow for the dissection of the interactions responsible for the global fold.

University of Warsaw In agreement with the conclusion of Harbury et al., the results of the
Pasteura 1, 02-093 Warsaw simulations indicate that the pattern of hydrophobic and hydrophilic
Poland residues alone is insufficient to define a protein’s three-dimensional

structure. In addition, these simulations indicate that the degree of chain
association is determined by the balance between specific side-chain packing
preferences and the entropy reduction associated with side-chain burial in
higher-order multimers.

7 1995 Academic Press Limited

Keywords: GCN4 leucine zipper; multimeric equilibrium; quaternary
structure prediction; quaternary structure stability; protein folding
simulations*Corresponding author

Introduction

The biological importance and inherent structural
simplicity of coiled coils have made them the object
of increasing attention. They are important structural
proteins (Phillips et al., 1986) and comprise a key
motif of DNA (Ferre-D’Amare et al., 1993; O’Shea
et al., 1991) and RNA (Banner et al., 1987; Cohen &
Parry, 1986) binding proteins. Their native structure
consists of two or more helices wrapped around each
other with a left-handed, helical supertwist (Crick,
1953). Coiled coils exhibit a characteristic seven
residue repeat (abcdefg)n (Hodges et al., 1981;
McLachlan & Stewart, 1975). Positions a and d are
mostly occupied by hydrophobic residues and form
the interface between helices. Positions b, c, e, f and
g are hydrophilic, with g and e being charged (Cohen
& Parry, 1990; Hodges et al., 1981). Residues
occupying the g and e positions are believed to play
a role in defining the mutual orientation of the
helices. Furthermore, since coiled coils are the
simplest examples of quaternary structure, they
represent a very useful model system for exploring
the factors responsible for the stability and
specificity of oligomeric structures. In this context,

Harbury et al. (1993) simultaneously substituted the
four a residues of the GCN4 leucine zipper (Val9,
Asn16, Val23 and Val130) and the four d residues
(Leu5, Leu12, Leu19 and Leu26) by Leu, Ile and Val.
All peptides were found to be more than 90% helical,
and their oligomerization states were determined by
equilibrium ultracentrifugation and gel filtration.
The modified peptides were named according to the
identity of the residues in the a and d positions (e.g.
LI stands for the mutant with Leu (Ile) in all four of
the a (d) positions). The IL mutant and the wild-type
populate dimeric species; II, LL, LV are trimeric, and
LI is tetrameric. The VL mutant populates both
dimeric and trimeric species, and the VI mutant
populates multiple species.

The goal of this paper is to extend our previous
predictions of the folding pathway and structure of
the wild-type GCN4 leucine zipper (Vieth et al.,
1994a) to calculate the equilibrium constant between
different oligomeric species. The most straightfor-
ward method would be to simulate the oligomeriza-
tion process directly, following the basic ideas used
for the prediction of structure and folding pathways
of the GCN4 leucine zipper dimer (Vieth et al.,
1994a). However, the computer time required for the
simulation of a number of chains leading to the
formation of a oligomerization state greater than
dimers is well beyond our computational resources.

Abbreviations used: PDB, Protein Data Bank; r.m.s.d.,
root-mean-square deviation.
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Figure 1. Schematic drawing of the interhelical
orientations studied: 2 represents parallel dimers; 2a
antiparallel dimers; 3 parallel trimers; 3a antiparallel
trimers; 4 parallel tetramers. 41a, 43a, and 44a represent
possible antiparallel tetramers studied in this work.

Method
An overview of the entire simulation methodology is

presented in Figure 2. The lattice model we use for the
estimation of the equilibrium constants is based on an
a-carbon representation of the protein backbone and a
multiple rotamer, single ball representation of the
side-chains (Kolinski & Skolnick, 1994a,b). The entire
parameter set for the force field, together with the scaling
factors for the different energy terms and their description,
is available by anonymous ftp (Vieth et al., 1994b).

Lattice model of proteins

Geometric representation and move set

The protein model used for these studies is based on an
a-carbon representation of the protein backbone and a
single sphere, multiple rotamer representation of side-
chains. A schematic representation of the model protein
chain is shown in Figure 3. a-Carbon atoms are placed on
an underlying cubic lattice with a grid spacing of 1.22 Å
and are connected by a set of vectors of the type 1.22*
4(2,2,0), (2,2,1), (3,0,0), (3,1,0), (3,1,1)5 (Kolinski & Skolnick,
1994b). Thus, there are a total of 90 possible ways of
choosing a vector connecting two consecutive a-carbon
atoms. There are some restrictions for two or three
consecutive vectors that prevent non-protein-like confor-
mations of the backbone. Two consecutive Ca-Ca vectors
must have their valence bond angle in the range 72.5° to
154°. Three consecutive Ca-Ca vectors are allowed if the
length of their sum is larger than 4.05 Å. These restrictions
lower the total number of three consecutive vector
occurrences (903) by roughly 60%. The inherent geometric
resolution of this lattice is very high; crystal structures
from the Brookhaven Protein Data Bank (PDB) can be
projected onto the lattice with an average root-mean-
square deviation, RMSD of 0.6–0.7 Å (Godzik et al., 1993a).

The Monte Carlo move set, depicted schematically in
Figure 4, consists of two bond moves, three bond
rearrangements, small shifts of larger chain pieces, chain
ends modifications and rotamer equilibration. Since the
object of the present study is the examination of
fluctuations about assembled structures, rigid body shifts
of the individual chains (used in the folding of the GCN4
leucine zipper to speed up the assembly process) were not
used. One Monte Carlo ‘‘time’’ cycle for this system is
defined as (N − 2)*M two bond moves, 2*M two bond
moves, M shifts of the chain pieces, and M*(N − 3) three
bond moves, where M is the number of chains, which
varies from 2 to 4 and N is the number of a-carbon atoms.
A typical simulation run consisted of 180,000*M cycles.

Statistical potential extracted from high resolution
structures from PDB

With two minor exceptions, the interaction scheme used
for the lattice model of coiled coils is identical to the one
described in a recent paper (Vieth et al., 1994a) for the de
novo folding of GCN4 dimers. A 6 kT penalty for too many
contacts for a given residue, designed to prevent
aggregation in unstructured clusters, was not used here.
On examining trimers and tetramers, we found that the
number of contacts exceeded the thresholds employed in
the folding experiments. However, even when this term is
deleted, the folding of the GCN4 leucine zipper from a pair
of random chains still occurs, but the folding process is
somewhat slowed down. We also abandoned the harmonic

In addition, the folding process would need to be
repeated hundreds of times to be statistically
significant. Thus, we have opted to develop a
methodology that assumes a spectrum of parallel
and antiparallel oligomers and attempt to estimate
the equilibrium constants within the set of assumed
species (schematically shown in Figure 1). The
methodology proposed for accomplishing this is
based on a new application of the classical Mayer and
Mayer statistical mechanical approach (Mayer &
Mayer, 1963). The basic idea presented here is to use
a computer simulation to obtain the variables
necessary for the statistical mechanical treatment.
Most importantly, the method presented below
allows us to identify, in the context of the model,
the dominant interactions responsible for the
quaternary structure of coiled coils. To achieve this
identification, the method assumes that the energy
landscape is such that there are distinct minima
corresponding to different, bound oligomerization
states (dimers, trimers or tetramers, which may be
either parallel or antiparallel) and that the barriers
between them are large enough to be considered
effectively infinite.
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Figure 2. For each mutant, every
oligomer is generated and subjected
to unrestrained, isothermal Monte
Carlo simulations under conditions
(energy function, temperature)
identical to those for which the
wild-type GCN4 leucine zipper was
refined (Vieth et al., 1994a). Then, the
partition functions for each mutant in
every oligomeric state are calculated
and the most populated species are
assigned for the relevant chain
concentration.

restraint between centers of masses of the side-chains used
to regulate the concentration of chains in the folding
experiments.

The interaction scheme is derived in the same spirit
as that of Kolinski & Skolnick (1994b), but with some
differences and improvements in the energy terms. Apart
from a larger database used for the derivation of all of the

statistical terms in the potential, the major difference arises
from the use of a different burial term (coiled coils do not
have spherical geometry; thus, the centrosymmetric burial
potential used for single domain globular proteins cannot
be used) and a slightly different description of the short
range interactions. The local effective Ramachandran
potential (that depends on the chirality and the end-to-end
distance of three consecutive vectors) is now residue-
dependent. In addition, the term describing local
side-chain orientations depends on the angular correlation
of neighboring Ca-Cb groups (rather than on the
Ca-side-chain center of mass orientations used in the
original treatment of Kolinski & Skolnick (1994b) for
globular proteins). Both changes act to provide sharper
interfaces between secondary structural elements. Never-
theless, both factorizations of the local conformational
propensities yield very similar results when applied to the
folding of Rop monomer, protein A and crambin (Kolinski
& Skolnick, 1994a). Furthermore, the backbone-dependent
rotamer library used for all coiled coil studies is an
improved version of the rotamer library reflecting better
statistics in the larger database. Based on the folding of the
Hodges’ sequences (Hodges et al., 1981) and a test of the
dynamic stability of assembled dimers, slightly different
scaling factors (Kolinski & Skolnick, 1994b) for the different
energy terms were chosen to keep the helix content of the
non-interacting chains below 50%, as well as to maintain
a proper balance of the short-range and long-range
interactions. The scaling factors for all of the coiled coils
systems studied below are the same as in the previous
work on GCN4 leucine zipper folding (Vieth et al., 1994a).

The entire interaction scheme can be subdivided into
short and long-range interactions. By short-range, we mean
local conformational preferences of neighboring residues
along the sequence. Similarly, by the term long-range
interactions, we mean all interactions that are at least four
residues apart. The entire potential (with the exception of
the hydrogen bond term) is based on a statistical analysis

Figure 3. Schematic representation of the model protein
chain. a-Carbon atoms are positioned on the underlying
cubic lattice with mesh size 1.22 Å and connected by a set
of vectors of type 4(3,1,0) (3,1,1), (3,0,0), (2,2.1), (2,2,0)5.
Each a-carbon has its own repulsive region (white circles).
Side-chains are represented by single sphere, multiple
rotamers (shaded circles).
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Figure 4. Monte Carlo move set used in this study.
Continuous lines and shaded circles represent premodified
bonds and a-carbon positions, respectively. Shaded lines
and open circles represent modified bonds and a-carbon
positions. A, two bond moves; B, chain end modifications;
C, three bond moves; D, shifts of the chain pieces.

bonds (proline is an exception and can participate in only
one hydrogen bond), and there is no directionality
(donor-acceptor) in the scheme. Two residues i, j are
considered to be hydrogen-bonded if they satisfy the
following distance and orientational criteria:

=i − j =e3

4.6 ÅE=rij =E7.3 Å

=(bi−1 − bi )·rij =E13.4 Å2

=(bj−1 − bj )·rij =E13.4 Å2 (1a)

where rij is the vector connecting the a-carbons of residues
i and j, and the bk (k = i − 1, i, j − 1, j ) are the corresponding
bond vectors which are shown in Figure 5. This model
hydrogen bond, which is very similar in spirit to the
Levitt-Greer (1977) method of secondary structure
assignment, reproduces about 90% of the main-chain
hydrogen bonds as assigned by the Kabsch-Sander (1983)
program for real proteins. An explicit cooperativity is also
introduced into the hydrogen bond scheme. When two
neighboring pairs of residues are hydrogen bonded, the
system gets an additional favorable energy (cooperativity).
The hydrogen bond contribution to the potential can be
expressed as follows:

EHB = s
N − 3

i = 1

s
N

j = 1, i + 3

(EHdij + EHHdijdi+1, j+1) (1b)

where EH = − 0.6 kT is the hydrogen bond energy,
EHH = − 0.75 kT is the cooperativity energy. dij = 1(0) if
residues i and j are (not) hydrogen bonded.

Effective Ramachandran potential

This sequence-specific part of the potential is introduced
to correct the lattice distribution of Cai-Cai+3 distances so
that they reflect a protein-like distribution of local
conformations. Consider a set of three consecutive bond
vectors bi−1, bi and bi+1; see Figure 6. Then let

Ri
14 = =bi−1 + bi + bi+1=2X (1c)

where X = sign4(bi−1 × bi )·bi+15. The potential we employ
depends on both Ri

14, which is amino acid pair-specific as
well as a generic propagator term that depends on the

of a set of high resolution crystal structures from the PDB
database. The list of the structures used in the derivation
of the potential is provided in Table 1. In what follows, the
individual terms are presented in detail. All parameters
are available via anonymous ftp (Vieth et al., 1994b).

Short range interactions: hydrogen bonds

The model hydrogen bond potential is residue-indepen-
dent and is defined based on the main-chain geometry.
Each a-carbon can participate in at most two hydrogen

Table 1. PDB codes of the 235 proteins used for the derivation of the statistical potentials
1imm 1ipd 1kst 1l01 1lap 1ldm 1lfg 1lh1 1lhm 1lig 1mbc 1mpp
1mrm 1nn2 1ntp 1ofv 1omd 1paz 1pgd 1pgx 1phh 1pii 1pk4 1ppa
2mhr 1ubq 1ctf 1aai 1c5a 2ovo 1hcc 1gd1 2aza 2fbj 1ppd 1psg
1q21 1r69 1rat 1rbp 1rcb 1rn4 1rnh 1s01 1sgc 1sgt 1snc 1tfd
1tgi 1tie 1ton 1trb 1xis 2aaa 2act 2apr 2bb2 2bus 2c2c 2cdv
2cna 2ctx 2fcr 2fgf 2fx2 2fxb 2gbp 2gcr 2gn5 2lhb 2liv 2nn9
2npx 2por 2prk 2reb 2rhe 2sn3 3adk 3b5c 3bcl 3blm 3cln 3dfr
3enl 3est 3grs 3icb 3icd 3pfk 3wrp 41bi 4fd1 4rxn 4tgf 4tms
4tnc 5acn 5dfr 6rxn 6taa 8adh 1aap 1abm 1acb 1ake 1bbh 1bbk
1bbp 1bbq 1bov 1c2r 1cdt 1cgi 1cob 1col 1cpc 1er8 1fbh 1fcb
1fdl 1fxa 1gct 1gmf 1gp1 1gsr 1gst 1hmd 1hne 1hrh 1il8 1ith
1ldn 1lld 1lmb 1lpr 1mbl 1mca 1msb 1mvp 1nbt 1nsb 1ova 1ovo
1pbx 1pp2 1prc 1rnb 1rve 1sar 1sdh 1sdy 1tab 1tec 1tlp 1tpk
1vaa 1wgc 256b 2ccy 2ci2 2fb4 2hip 2hla 2ltn 2scp 2tim 2tpr
2trx 2utg 2ypi 3fis 3gap 3rp2 3sdp 3sic 4cpa 4hhb 4mdh 4phv
4sgb 4tsl 5rub 8atc 8cat 1aak 1aaj 1aba 1alb 1alc 1ald 1ama
1apb 1aps 1apt 1atx 1avr 1bbc 1bia 1bp2 1bti 1ca2 1cbx 1ccp
1ccr 1cd4 1cdp 1cla 1cms 1cox 1cp4 1csc 1drl 1dri 1dtx 1eca
1ego 1end 1epg 1ezm 1f3g 1fha 1fkf 1fxd 1gal 1gky 1gly 1gox
1gpr 1gps 1hbg 1hid 1hoe 1ifb 1rop
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Figure 5. Schematic representation of the hydrogen
bond scheme. Geometric criteria used for assessment
of whether residues i and j are hydrogen bonded. bi−1

(bj−1) represents bond vectors connecting residues i − 1
and i (j − 1 and j ). rij is the distance between a-carbon
atoms of ith and jth residues (see equation (1a)). Broken
lines represent hydrogen bonds between extended pieces
of the chain. Shaded lines represent helical hydrogen
bonds.

Figure 6. Schematic drawing of the chain showing the
various symbols used to define equation (1c). Ai (Aj )
is the identity of ith (jth) residue. The bk (k = i − 2, i + 1,
etc.) are the corresponding bond vectors.

the side-chain center of mass. The set of allowable
conformations for the side-chains associated with the ith Ca

depends on the virtual bond angle between backbone
bonds bi−1 and bi , ui . Different residues have a different
number of rotamers, whose number ranges from one for
alanine to 21 for some backbone conformations of arginine.
The maximum number of rotamers for different residues
are shown in Table 3. The energy of a given rotameric state
for a given residue Er , depends on its relative population
in the database. The total rotameric energy is

Erot = s
N − 1

i = 2

Er (Ai , ui ) (1e)

where the scaling factor for the rotamer energy is 0.5.

Local side-chain of orientational preferences

We also employ an energetic term that specifies the
different relative orientational preferences of neighboring
Ca-Cb vectors. Since the position of the Cb atoms are
determined from the position of two backbone vectors
(Rey & Skolnick, 1992), this contribution to the
potential depends only on the backbone conformation; it is,
however, amino acid pair-specific. Its functional form is as
follows:

Eb = s
N − 1

i = 2 0s
4

k = 1

Ek
b(cos ai,i+k , Ai , Ai+k )1 (1f)

where cos ai,i+k is the cosine of the angle between the Ca-Cb

vectors of residues i and i + k, Ai , Ai+k are the identities of
the corresponding residues (see Figure 7). Eb is the
residue-specific side-chain orientational coupling energy.
The scaling factor for this part of the potential is 1.0.

Long-range interactions: burial energy

If the number of side-chain contacts (defined below) for
a given residue is greater than a residue-dependent burial

depends on the conformation states of Ri − 1
14 and Ri

14, but
because of poor statistics, this term is amino acid-indepen-
dent.

ER14 = s
N − 2

i = 2 03E14(Ri
14, Ai , Ai+1)

+ E14=14(Ri − 1
14 =Ri

14)1 (1d)

Ai is the type of amino acid located at residue i. For each
pair of amino acids, E14 is divided into 12 discrete bonds,
whose relationship to more standard secondary assign-
ments is summarized in Table 2A. Similarly, the
residue-independent coupling energy E14=14, whose values
are presented in Table 2B, is a 12 × 12 asymmetric matrix
that describes the average energy of Ri

14 given that it has
been preceded by Ri − 1

14 .

Side-chain rotamer energy

A side-chain rotamer library has been constructed
which is similar in spirit to that presented by Kolinski &
Skolnick (1994b). With the obvious exception of glycine,
each side-chain is represented by a single point located at
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Table 2. Characterization of Properties Associated with the R14 Distribution
A. Description of the bins for the R14 distribution

Bin
number R14 value Chirality Description

1 < 79 Left-handed Beta
2 79–55 Left-handed Beta
3 36–56 Left-handed Loop
4 26–35 Left-handed Loop/turn
5 13–25 Left-handed Helix
6 1–13 Right/Left-handed Prohibited
7 14–25 Right-handed Helix
8 26–45 Right-handed Loop/turn
9 46–64 Right-handed Loop

10 65–71 Right-handed Beta
11 72–81 Right-handed Beta
12 > 81 Right-handed Non-existent

R14 value shows the square of the end-to-end distance for three consecutive vectors in lattice units. The chirality is considered to be
left-handed, if for the consecutive vectors bi−1, bi , bi+1 (bi−1&bi )·bi+1 is less than zero; otherwise it is right-handed.

B. Energies E14=14 (Ri − 1
14 =Ri

14) for 12 conditional bins of the R14 distribution
Bin
number 1 2 3 4 5 6 7 8 9 10 11 12

1 0.0 −2.2 −1.4 0.0 2.0 2.0 0.0 2.0 2.0 2.0 2.0 2.0
2 6.8 −1.8 −0.9 2.4 2.4 2.0 1.6 0.7 0.2 0.1 0.5 6.8
3 5.3 −0.4 −0.8 1.6 1.5 4.2 −1.4 −0.5 −0.7 1.5 3.0 5.0
4 2.0 −0.3 −0.5 2.5 −0.7 2.0 −0.7 −0.5 −1.1 2.3 1.4 2.0
5 2.0 1.6 0.3 2.5 −0.8 2.0 0.4 −1.2 −1.6 3.9 2.0 2.0
6 2.0 0.9 −1.0 1.6 1.6 1.6 −1.9 −0.5 −0.2 2.0 2.0 2.0
7 2.0 2.4 0.4 2.6 3.6 3.4 −2.2 0.0 0.3 5.0 6.2 2.0
8 5.8 −1.2 −1.0 2.1 1.8 4.0 −0.8 −0.2 −0.5 1.1 1.1 2.0
9 4.8 −1.3 −1.2 1.5 1.6 5.9 −0.3 −0.3 −0.1 1.0 1.4 5.9

10 3.3 −1.9 −0.9 1.6 1.5 2.0 2.7 0.9 0.6 0.9 0.3 2.0
11 3.0 −2.0 −0.7 2.6 2.6 2.0 3.7 1.3 0.9 1.4 −0.2 3.7
12 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

threshold, this residue is considered to be buried; for a
given residue type, such a conformation is considered to
be the zero of burial energy; whereas, when a residue is
unburied, it has energy, Eunbur. The energies of the unburied

states of the 20 naturally occurring amino acids, together
with their burial thresholds, are presented in Table 3. The
total one-body burial energy is given by:

Eone = s
N

i = 1

Eunbur(Ai , ncon(Ai )) (1g)

where ncon(Ai ) describes the number of side-chain
contacts for residue i. The scaling factor for the one body
term is 0.5.

Table 3. Contact based one body potential and the
threshold number of contacts for the burial status and the
maximum number of side-chain rotamers

One body Maximum
energy in the Burial contact number of side

Amino acid unburied state threshold chain rotamers

Gly −0.4 1 1
Ala 1.8 2 1
Ser −0.8 3 2
Cys 2.5 3 3
Val 4.2 3 2
Thr −0.7 4 1
Ile 4.5 4 3
Pro −1.6 3 1
Met 1.9 5 7
Asp −3.5 4 5
Asn −3.5 4 4
Leu 3.8 4 5
Lys −3.9 5 14
Glu −3.5 4 11
Gln −3.5 5 10
Arg −4.5 5 21
His −3.2 4 4
Phe 2.8 4 5
Tyr −1.3 5 4
Trp −0.9 5 6

Figure 7. Schematic drawing of the variables appearing
in equation (1d) (local side-chain orientational prefer-
ences). The open circles represent the positions of the Cb

atoms (which are off-lattice), and the shaded circles
represent the a-carbon positions. The broken arrows
represent Ca-Cb vectors.
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Figure 8. Schematic representation of pairwise inter-
actions. The shaded circles represent repulsive regions of
the interaction between the side-chains of residues i and j.
The top panel shows the case when the pair has an
attractive basin, and the bottom panel depicts the case
when residues i and j have a repulsive basin. The outer shell
represents the basin which may be attractive or repulsive,
depending on the identity of the pair of residues. uj is the
vector connecting residues j − 2 and j + 2 and uj = rj+2 − rj − 2.

near 20° (the minimum value of f occurs at a perpendicular
orientation of the interacting chains and is 0.22 of the
maximum value) (Kolinski & Skolnick, 1994b). Specifically,

f = 1.0 − (cos2(vij ) − cos2(20°)) (1i)

cos2(vij ) = (ri+2 − ri−2)·(rj+2 − rj−2)
=ri+2 − ri−2>rj+2 − rj−2=

where rk (k = i + 2, i − 2, j + 2, j − 2) is the position of the kth
a-carbon. This term serves to mimic the side-chain nestling
seen in real proteins (preferential packing angle for
structural fragments of real proteins). The scaling factor for
the pairwise interactions in all coiled coil simulations is 5.0.

Cooperative pairwise interactions

In order to introduce the possibility of a cooperative
transition from a molten globule-like state (having poorly
defined side-chain packing) to the native state (having well
defined side-chain packing), cooperative pairwise inter-
action templates were introduced. This class of terms
attempts to account for the possibility of specific side-chain
packing patterns, as well as for interactions which are not
readily described in a reduced model. While these terms
can magnify the interactions between well defined
secondary structure elements, they do not favor any
particular kind of secondary structure. The packing
template contribution to the potential is given by:

Etem = (eAi,Aj + eAi+k,Aj + n )dijdi+k,j+n , n = 23, 24 (1j)

where dij , and di+k,j+n equal 1(0) when two specific pairs of
residues i, j and i + k, j + n are (not) simultaneously in
contact. The scaling factor for this ‘‘template’’ interaction is
4.25.

Total energy of the system

For all of the simulations in the present work, the
reduced temperature, Tred, (used to determine acceptance
ratio of the moves via a standard asymmetric Metropolis
scheme (Metropolis et al., 1953)) was set to 1.85. This
temperature was chosen because in the original folding
simulations of GCN4, this corresponded to native
conditions.

The total energy of the entire system is given by:

ETOT = Eshort + Elong

= EHB + Eb + 0.25E14 + 0.5Erot + 0.5Eone

= 5Epair + 4.25 Etem (2)

Because the scaling factors of the energy terms used in this
study are obtained by parameterization of the model on a
generic coiled coil sequence (Hodges’ peptides (Hodges
et al., 1981)) and also worked reasonably well for the GCN4
leucine zipper dimer, we conjecture that the entire energy
function might provide a plausible estimation of the
relative stability of coiled coils. Whether or not this
conjecture is true forms the basis of the investigations
described below. We do, however, note that statistical
potentials have provided a rationalization of the relative
stability of a number of mutations in phage T4 lysozyme
(Godzik et al., 1993b). Furthermore, the frequency of
occurrences of charged residues obeys Coulombs law,
albeit with a too high dielectric constant (Bryant &
Lawrence, 1991). Thus, the ability of such statistical
potentials to provide qualitative insight into relative
protein stability is not without precedent.

Pairwise potential

When the distance between side-chain centers of masses
between two residues i and j, rij , (=i − j = > 3) is less than a
residue-dependent threshold value, Rij , residues i and j are
defined to be in contact. The total pair energy of all such
contacting pairs is

Epair = s
N

i = 1

s
N

j = i + 4

Eij
two(Ai , Aj ) (1h)

Erep if =rij =ERrep
ij

Eij
two(Ai , Aj ) = g

G

G

F

f

aijeAi,Aj if Rrep
ij E=rij =ERij and eAi,Aje0

aijfeAi,Aj if Rrep
ij E=rij =ERij and eAi,Aj < 0

where the geometry is depicted in Figure 8. Rrep
ij is the

threshold value for the onset of the soft core repulsion. It
is amino acid pair-specific and is of the order of 0.4Rij . Erep

is the inner core repulsion value (6 kT ), eAi,Aj
is the pair

potential between amino acid type Ai and Aj ; the 20 × 20
matrix for eAi,Aj

is shown in Table 4. aij is a scaling factor for
the relative interaction strength of residues i and j, with
a = 0.6 if =i − j = = 5, 6, and a = 1 otherwise. This serves to
avoid the problem of non-physical local clustering of
side-chains. f is a scaling prefactor which depends on the
orientation of two backbone fragments containing two
interacting residues and is peaked at relative orientations
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Protocol for extracting the equilibrium
constant from a simulation

In order to compare with experiment, we have to
calculate the equilibrium constants associated with the
dimer, D, trimer, T, and tetramer, R, species.

3Dt 2T (3a)

2Dt R (3b)

The equilibrium constants (McQuarrie, 1976) are:

KDT = 4T52

4D53 (4a)

KDR = 4R5
4D52 (4b)

with 4D5, 4T5 and 4R5 the concentration of dimer, trimer
and tetramer, respectively. The total concentration of
individual chains, C0 (expressed in molecules/Å3) is given
by:

C0 = 24D5 + 34T5 + 44R5. (4c)

Let us define the fraction of the dimers, trimers and
tetramers by:

xD = 24D5
C0

; xT = 34T5
C0

; xR = 44R5
C0

(5a)

Substituting xD, xT, xR to equations (4a), (4b), (4c) we get:

KDT = 8
9C0

x2
T

x3
D

(5b)

KDR = 1
C0

xR

x2
D

(5c)

XD + XT + XR = 1 (5d)

Since equations (5b) to (5d) comprise three equations in
three unknowns (xD, xT, xR), these equations can be solved
numerically (Press et al., 1993), once the corresponding
equilibrium constants are known. From the statistical
mechanical point of view, the equilibrium constants from
equations (4a) and (4b), (5b) and (5c) are defined as (Fowler
& Guggenheim, 1960); Herschbach, 1959; Mayer & Mayer,
1963):

KDT =
0ZT

V 1
2

0ZD

V 1
3

=

V0VZp,TZint,T

sT 1
2

0VZp,DZint,D

sD 1
3

= Z2
int,Ts3

D

Z3
int,Ds2

T
(6a)

KDR = 4R5
4D52 = Zint,Rs2

D

Z2
int,DsR

(6b)

with V the total volume of the system and sg is the
symmetry number (s = 2!, 3!, 4! for homo dimers, trimers
and tetramers, respectively). Zg ( = VZp,gZint,g) is the
partition function (or phase integral) for species g
( = D, T, R) and is defined as (Herschbach, 1959; Mayer &
Mayer, 1963):

Zg = 1
sgh3Ng

× g . . . g exp(−H/kT ) dp1 . . . dp3N dx1 . . . dx3N (6c)

with H being the total Hamiltonian of the system (the sum
of the kinetic and potential energy), h is Planck’s constant
and 4pi5, 4xi5 are the momenta and coordinate degrees of
freedom. Zp,g and Zint,g are the integrals corresponding to
integration over the momenta and internal coordinate
degrees of freedom (also called the internal partition
function) for oligomer g, respectively. Furthermore, there
is a factor of V in equations (6a) and (6b) that comes from
the coordinate integration over the translational degrees of
freedom of the chain (Davidson, 1962; Herschbach, 1959).
The integration over the momenta, Zp,g, is of the form:

Zp,g = t
Ng

i = 1 02pmikT
h2 1

3/2

(6d)

Since the number and the mass of atoms remains constant
in reactions (3a) and (3b), these contributions cancel.

Let us note a number of facts associated with this
approach. The equilibrium constants (equations (4a), (4b),
(5b), (5c), (6a) and (6b)) are independent of concentration
of the individual chains and are functions of temperature
alone. However, the relative populations of the species (xD,
xT, xR) are concentration-dependent. Due to the loss of the
translational entropy, the lower the concentration C0 is, the
higher is the population of the lower order oligomers. At
infinite dilution, only monomers will be present.

Calculation of the internal partition function

The treatment we propose allows one to calculate the
internal partition function for any bound state separated
from other distinct states by large energy barriers. It is, in
principle, exact for any model (continuous or discretized)
assuming that adequate conformational sampling is
possible. Consider a system comprised of 3Ng coordinates.
Here, Ng corresponds to the number of distinct structural
elements: in our case, the number of Ca atoms and
side-chain centers of mass. The probability of having a
conformation (with the first group fixed in space) inside a
3Ng − 3 dimensional volume element centered about
r = (r2, r3, r4, . . . , rNg) is

Pu (r) = exp( − E(r)/kT )
Zint,g 0tNg

i = 2

dvi1 (7a)

E(r) denotes the energy of the internal conformational state
r, k is Boltzmann’s constant, and T is the temperature.
Equation (7a) can be used to precisely calculate the internal
partition function Zint,g, provided that the corresponding
probabilities can be obtained (e.g. from a Monte Carlo
simulation).

Now, let us concentrate on the derivation of the Pu (r). We
begin the treatment by fixing the origin at the coordinates
of the first Ca (Davidson, 1962; Herschbach, 1959). The
coordinates of the second Ca are expressed in a spherical
coordinate system, (R2, u2, f2), whose origin is at the first
Ca. Similarly, the third Ca is expressed in terms of
coordinates (R3, u3, f3) expressed with respect to an origin
located at the second Ca. The configurational partition
function is independent of (u2, f2, f3), which comprise
three Euler angles. The probability of seeing a specific
value of (u2, f2, f3), P(u2)P(f2)P(f3), is just 1/8p2

(Herschbach, 1959. Thus, Pu (r2, r3, r4, . . . , rNg) is given by:

Pu (r2, r3 . . . rNg) = P(u2)P(82)P(83)P(R2, R3, u3 . . .)

= 1
8p2 P(R2,R3,u3 . . .) (7b)
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The probability calculated from the Monte Carlo
simulation, P(r), has to be corrected for the fact that only
a portion, V, of the entire range of Euler angles is sampled
during the course of the simulation. Thus, P(r) is given by:

P(r) = 1
V P(R2, R3, u3 . . .) (7c)

Substituting equation (7c) into (7b), gives the probability
that the system is free to assume all possible orientations
of (u2, f2, f3):

Pu (r2, r3 . . . rNg) = V
8p2 P(r) = QMCP(r) (7d)

For all of the simulations, we calculate QMC (the correction
term for sampling a limited range of rotations) as the
average number of observed two consecutive Ca-Ca vectors
divided by the total number of possible two consecutive
Ca–Ca vectors. In all cases, this number is close to 1/80, and
for simplicity, we can assume that our simulations sample
a unique orientation of the molecule in space (that is,
QMC11/8p2).

In the Monte Carlo (Binder, 1986; Metropolis et al., 1953)
method, the canonical distribution of stages is obtained by
Markovian sequence in which the ratio of the probabilities
between two conformational states r and r' are given by:

P(r')
P(r) = exp( − E(r')/kT )

exp( − E(r)/kT ) (7e)

Thus, by calculating the fraction of time a system spends
in a given state (r) a dynamic Monte Carlo method provides
P(r). From equations (7a) and (7d) we get:

Zint,g = 8p2 exp( − E(r)/kT )

t
Ng

i = 2

dvi

P(r)

with r = (r2, . . rNg) (8a)

Note that r can be any conformational state. However, in
what follows, due to the better statistics, the most probable
state is used (the state visited most frequently). This
approach has the advantage of being exact even for
functions having multiple minima on an anharmonic
energy landscape (Vieth et al., 1995), provided the
sampling is efficient. In practice, for systems having
substantial conformational fluctuations, the probability
P(r) cannot be reliably calculated due to the poor sampling
statistics. This requires that a number of simplifying
approximations be made.

Local volume factorization

To enrich the sampling, the probability P(r) of the entire
structure being in the 3Ng − 3 dimensional volume element
(centered about the most probable conformational state) is
approximated as the product of the Ng − 1 independent
probabilities that each group is in a three-dimensional box
centered around its most probable state. That is,

P(r)3t
Ng

i = 2

Pi,max(ri) (8b)

Equation (8b) is referred to as the local volume
factorization approximation. The name comes from the
choice of internal Cartesian coordinates that are used to
calculate the individual probabilities. The individual
probabilities are defined in a similar manner to the total
probability:

Pi,max(ri ) = P(ri,max − 1
2 Dr < ri < ri,max + 1

2 Dr); i = 2, Ng (8c)

where ri,max denotes the most probable position of ith group
and (Dr)3 = dvi . The choice of the first bead as the origin of
our internal coordinate system is arbitrary, and to remove
this arbitrariness, the total probability P(r) (equation (8b))
is better approximated as the product of Ng independent
probabilities divided by their geometric mean:

P(r)3
t
Ng

i = 1

Pi,max(ri )

0tNg

i = 1

Pi,max(ri )1
1/Ng

= 0tNg

i = 1

Pi,max(ri )1
1 − 1/Ng

(8d)

(If P(r) were calculated exactly, the results would be
independent of the choice of origin). The most probable
position of the ith group is computed from the trajectory
(in a typical run, we have about 1200 independent
structures) as the location (ri,max21/2Dr) of maximal
frequency of occupation of a given cubic volume element.
The idea of the local volume treatment is depicted in
Figure 9a and b for the backbone and side-chains,
respectively. The volume space is discretized and divided
into small boxes, (each side has length Dr = 2.6 Å), with the
origin located at the average position of each group. The
probability of being in the most frequently occupied box
is the fraction of time this box is occupied.

Using the local volume factorization approximation
(equation (8d)), the internal partition function defined by
equation (8a) for oligomer g becomes:

Zint,g38p2 exp( − E(g, r)/kT )2 t
Ng

dvi

Pi,max(ri )3
1 − 1/Ng

(9a)

E(g, r) corresponds to the energy of the most probable
conformation of oligomer g, and Ng is the number of groups
(united atoms in the lattice protein model) in species g.
While this approximation is not exact, for test energy
functions having a similar character as those used here, we
have found that the local volume factorization approxi-
mation gives satisfactory estimates for the partition
functions; errors in the equilibrium constants are on the
order of 10 to 20% (Vieth et al., 1995). Comparison with
exhaustive searches on a number of small systems
indicates that the partition function of equation (9a) tends
to somewhat overestimate the configurational entropy.
Note that equation (9a) is exact for any system with
independent groups, regardless of the nature of the energy
surface.

For notational convenience let us define for oligomer g,
the average accessible volume per bead (defined here as the
geometric mean of the product of all accessible volumes):

(9b)�Vg� = 2 t
Ng − 1

i = 1

dvi

P(r) 3
1/(Ng − 1)

32 t
Ng

i = 1

dvi

Pi,max(ri )3
1/Ng

In other words, the mean accessible volume is equal to the
three-dimensional volume element divided by the average
probability of a group being in this volume element.

The internal partition function is defined as the product
of the volume elements available to groups in the molecule
g:

Zint,g = 8p2 exp( − E(g,r)/kT )�Vg�Ng − 1 (9c)
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Note that P dvi /Pi,max(ri )) is related to the configurational
entropy of all of the groups. The exact treatment (equation
8a)) differs from the approximate treatment (equation (9a))

by definition of the average accessible volume per group.
The value of dvi should be chosen such that the energy
E(g, r) remains approximately constant within the

Figure 9. a, The large circles
represent the mean radius of inter-
action for the side-chains of residue
Leu30. The small squares depict
positions of the centers of mass of the
side groups. The small squares
depict positions of Ca atoms. The
broken lines indicate the boundaries
of the volume elements (with sides of
length 2.6 Å). P indicates the prob-
ability (fraction of time) of a group
(Ca or side-chain center of mass)
being in the given volume. Each of
the five snapshots from the simu-
lation trajectory is indicated by the
number of the Leu30 Ca (e.g. 30L2) or
the side-chain center of mass (de-
noted by Xs for the calculation of the
accessible volume for the Leu30
side-chain). Simplified depiction of
the calculation of the accessible
volume for the Ca of Leu30. The
probability of the Leu30 Ca being in
the most probable volume element
(which need not be in the same
volume element as Xa) is 3/5. b,
Simplified depiction of the calcu-
lation of the accessible volume for the
side-chain of Leu30. The average
position of the side-chain is placed in
the middle of the central box (Xs). In
the case presented here, the prob-
ability of the side group of Leu30
being in the most probable volume
element is 2/5. The origin of the
internal coordinate system has been
translated with respect to Figure 9a,
so that the average position of the
Leu30 side-chain center of mass is
placed in the middle of the central
box (Xs).

(a)

(b)
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corresponding 3Ng − 3 dimensional volume element. Thus,
we chose the box size of dvi = (2.6 Å)3 for each accessible
volume element. This corresponds to the mean interaction
basin for the side-chains and the mean radius for the Ca

atoms. The most probable structure r = (r1,max . . . , rNg,max) is
calculated based on the most frequently occupied position
of each of the groups during the simulation. There is no
explicit correlation between the group positions that give
rise to the most probable state, and this is probably why
the specific conformation corresponding to the most
probable state was not observed in the simulations. That is
why all of the structures having root-mean-square
deviation (RMSD) less than 1/2dv1/3

i = 1.3 Å from the most
probable structure r = (r1,max . . . , rNg,max) are considered to
form the ensemble of structures used to construct the
energy E(g, r). The energy of the most probable structure
E(g, r) corresponds to the average energy over this
ensemble. Nevertheless, the average energy of the
structures close in space to the most probable structure is
roughly 3.5 kT per monomer (see Tables 5 and 8) lower than
the average energy of all of the structures. This indicates
that the neighborhood of the ‘‘most probable structure’
represents a local minimum in the energy landscape and
that the free energy calculated using equation (9a) is an
approximation to the free energy of a system located in
this local minimum. The reason for the choice of the
most probable structure as the most probable position of
all the independent groups is as follows. For a system
having two or more most isoenergetic structures, it is
better to choose one of them rather than choose the
average over all such structures, as the resulting
conformation may in fact reside at a local energy maximum
(Vieth et al., 1995).

Free energy differences for dimer-trimer-tetramer
equilibria

Let us write the difference in free energy for
reaction described in equation (3a) (3Dimers : 2Trimers)
in terms of the average accessible volume and energy
(compare with equation (4a)). First, we define the
equilibrium constant for the dimer-trimer equilibrium
expressed in the number of molecules (compare to
concentration equilibrium constant from equation (4b)) of
dimers ND and trimers NT:

KN
DT = N2

T

N3
D

=

V20NT

V 1
2

V30ND

V 1
3

= 4T52

V4D53 = KDT

V (10a)

The free energy difference when dimers form trimers is:

DGDT(V, T ) = − kT ln(KN
DT) = − kT ln(KDT/V) (10b)

Substituting equations (6a) and (9c) into equation (10b) we
get:

DGDT(V, T ) = − kT ln0 s3
D

8p2s2
TV

�VT�2NT − 2

�VD�3ND − 31
+ 42E(r, T) − 3E(r, D)5 (10c)

The factor kln(8p2V) is related to the loss of the
translational and rotational entropy when dimers form
trimers, whereas the ratio of the accessible volumes
describes the change in internal configurational entropy.

For a concentration of 2 mM (200 mM), the value of
− kTln(8p2V/2.6 Å3) is equal to − 22kT (17.4 kT ). An
equivalent treatment can be done for the dimer/tetramer
equilibrium:

DGDR(V,T ) = − kT ln0 s2
D

8p2sRV
�VR�NR − 1

�VD�2ND − 21
+ 4E(r, R) − 2E(r, D)5 (10d)

Generation and equilibration of the starting
structures

To generate the starting structures for dimeric, trimeric
and tetrameric coiled coils, the initial sequence is aligned
to the heptet repeat pattern with the appropriate
hydrophobic residues assigned to the a and d positions. To
accomplish this assignment, we use an automated
algorithm that calculates the gapless inverse folding score
for a given sequence being in each of seven different
positions (the alignment can start from a through g in the
coiled coil heptet) in an idealized dimeric coiled coil
structure (J. Hirst, M. Vieth, J. Skolnick, C. L. Brooks,
unpublished result). The scoring function is the sum of the
hydrophobic moment, the sequence-dependent Ra-
machandran potential, the burial energy and the pair
potential described above. The best score per sequence
dictates the proper alignment of a given sequence to the
heptet repeat. For the tested mutants of the GCN4 leucine
zipper, the residue assignment to the a to g positions based
on our automated alignment method is consistent with the
Lupas algorithm (Lupas et al., 1991) as well as with the
experimental data (Harbury et al., 1993).

Next, the aligned sequence is projected onto a helical
wheel. Then, the helices are built on the lattice and
translated to be in the neighborhood of each other, with
more or less correct registration (Harbury et al., 1993; Vieth
et al., 1994a). Equilibration of the trial structure is then
initiated by on lattice Monte Carlo simulations. Side-chain
contact restraints between the corresponding a and d
residues, along with helical biases for the entire chain
backbone, are used to generate appropriate coiled coil
configurations. The left-handed supertwist of the helices
spontaneously emerges during this part of the equili-
bration process. The resulting coiled coil conformation is
subjected to 180,000 Monte Carlo cycles of unrestrained,
isothermal Monte Carlo simulations (using the energy
function of equation (2) and a temperature of 1.85 K). The
lowest energy structure from the isothermal run is
considered to be the starting structure for conformational
sampling of a given mutant. We note that significant
structural rearrangement can occur in the equilibration
phase. For example, the II trimer with incorrectly assigned
a and d positions (purposely shifted by one residue)
rearranges to a trimer with correct a and d positions. The
correct initial assignment of interresidue contacts, does
expedite the equilibration process.

Protocol for production runs

For each mutant, every oligomer is equilibrated as
described above, and then subjected to isothermal
production simulations under identical conditions to those
used for the equilibrium process (T = 1.85 K, energy
function of equation (2)). However, to enhance the
conformational sampling in the vicinity of the ‘‘native’’
conformation, we slightly modify the original Monte Carlo
procedure. A given production run consists of 90 iterations,
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Figure 10. Running average en-
ergy showing the parallel dimers of
the LL mutant. The four curves show
running average energies computed
from the different points in the
trajectory.

each comprised of 2000 Monte Carlo cycles. For iteration
i, the starting structure is chosen to be the lowest energy
structure from iteration i − 1. For each run, a total of 1800
snapshots is collected, i.e. a snapshot is taken every 100
Monte Carlo cycles. Then, a window size of 8000 (80
snapshots) is used to determine the running average
energy. The plateau for the running energy is determined
by two criteria. First, the running average energies
computed at the end of the two consecutive windows
(starting from the putative point where the energy reaches
a plateau value) are required to be within 1 kT/monomer.
Next, the final average energy computed from the point
where the plateau is reached and all subsequent windows
is also required to be within 1 kT/monomer.

Figure 10 shows four plots of the running average
energies computed from four different starting windows.
There are a total of 22 possible starting points and the
earliest snapshot that fulfills the above criteria is
considered to be the starting plateau point. From this point,
the average energy as well as the average accessible
volumes are recomputed. In most cases, the plateau for
the average energy is reached after 80,000 (equivalent
to the tenth window) Monte Carlo cycles. In some cases, the
plateau is never reached; these runs are discarded. In
general, in the plateau region, the average RMSD of a single
structure from the average structure is about 1.5 Å. Most
structures reside within a 3 Å wide tube centered about the
average structure. The average overlap between interchain
side-chain contact maps for dimers, trimers or tetramers is
70, 75, 80%, respectively.

For each sequence (wild-type and the seven mutants) in
each assumed structure (dimers, trimers, tetramers), a
minimum of four production runs were performed. The
free energies from four runs are averaged, and if the fifth
run does not change the average values of the free energy
by more than 1 kT per monomer (or roughly 1%), then the
procedure is terminated. Otherwise, the procedure
continues until the 1 kT per monomer convergence in the
average free energy is reached.

The comparison of the free energies from the ‘‘true’’
Monte Carlo procedure with the modified procedure is
presented in Table 5 for the LL mutant. The free energies
were calculated in the identical manner using the
methodology described below. What is clear from Table 5
is that ‘‘true’’ Monte Carlo procedure has larger average

energy values, larger entropy and larger RMS fluctuations.
The differences in free energies between dimers, trimers
and tetramers from the ‘‘true’’ Monte Carlo results lie
within 0.6 kT/per monomer of the values for the modified
procedure. Recognizing that we emply a 1 kT/monomer
threshold for convergence, it is apparent that the ‘‘true’’
Monte Carlo procedure give results similar to the modified
Monte Carlo procedure. What is more important is that
regardless of the Monte Carlo procedure used, the
dominant species computed remain the same over the
examined concentration regime. However, only a quarter
of the ‘‘true’’ Monte Carlo runs exhibit a plateau region in
the running average energy and that is why modified
Monte Carlo is more ‘‘productive’’ for the purposes
described in this paper.

Results

The method described in the previous section has
been applied to the various oligomeric states
depicted in Figure 1 for the mutants of the GCN3
leucine zipper (Harbury et al., 1993). All helical
orientations (including three antiparallel orientations
of helices in tetramers) were considered for the LL
mutant of the GCN4 leucine zipper. As can be seen
from Table 6, the computed free energies for the
antiparallel species are considerably higher (05 kT/
monomer) than those of the parallel species. This
energy difference is large enough to allow for the
dismissal of antiparallel structures for this mutant.
The preferential stability of parallel over antiparallel
species seems to be conserved for other tested
mutants (Table 6). Because of the invariance of
destabilizing charged residues at the e and g
positions in the antiparallel arrangement, we would
expect this trend to hold for the other mutants as
well. Thus, for all other mutants, we only examined
the oligomeric equilibria between parallel dimers,
trimers and tetramers. However, we ignore the
possibility of higher order aggregates (i.e. pen-
tamers, dimers of trimers, etc.), which in principle
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Table 5. Comparison of the results from the ‘‘true’’ Monte Carlo procedure with those
obtained from the Monte Carlo with periodic restarts from the minimum energy
structure for the last 6000 cycles for the parallel orientations of II mutant

Thermodynamic and structural Configurational free energy
parameters difference/kBT per monomer

Dimer Trimer Tetramer DGD:T DGT:R

LL −131.7a −136.5 −134.0 −4.8f 2.5g

MC −110.9b −118.6 −116.9
with −106.4c −116.2 −113.8
restarts 20.8d 17.9 17.1

1.68f 1.49 1.49

LL −141.4 −146.5 −144.6 −5.1 1.9
‘‘true’’ −105.9 −116.6 −114.8
MC −103.6 −112.1 −113.4

35.2 29.9 29.8
2.11 1.90 2.19

a The total free configurational energy per monomer expressed in kT units:
Gconf = (E(g, r) + (Ng − 1)ln�Vg� − (Ng − M)lndvi )/M, where dvi = 2.63, M is the number of chains
and E(g, r) is the energy of the most probable ensemble of structures.

b The average energy of ensemble of the most probable structures (per monomer) E(g, r)
expressed in kT units.

c The average energy of all of the structures, computed from Monte Carlo runs.
d Configurational entropy contribution of all of the groups (per monomer) calculated using the

local volume factorization approximation. In this Table, we report the values of effective entropy,
i.e. the effective entropy = ((Ng − 1)ln�Vg� − (Ng − M)ln dvi )/M, where dvi = 2.63 and M is the
number of chains.

e The average RMSD of structures from the average structure for Monte Carlo runs.
f The configurational free energy difference per monomer for the reaction D : T.
g The configurational free energy difference per monomer for the reaction T : R.

could also occur (Chmielewski, 1994; Harbury et al.,
1993).

Employing equations 3 to 10 for each mutant, we
calculated the partitioning between dimers, trimers
and tetramers. Because of the limited accuracy of our
energy function as well as simplifications in the
probability calculations, we restrict the calculation to
the prediction of the dominant species for each
mutant at a given concentration. Thus, we calculate

the partioning at low (2 mM) and high (200 mM)
concentration (Harbury et al., 1993; see, for example
Table 7). For all cases considered, we find that over
the experimentally measured concentration regime,
the predicted dominant species is the same.
However, in all cases, as would be expected because
of the law of mass action, in the low concentration
regime (about 2 mM), the population of lower order
oligomers increases.

Table 6. Configurational free energies per monomer and average RMSD from Monte Carlo
runs for different mutants in different studied arrangements

Parallel orientations Antiparallel orientations

a d 2 3 4 2a 3a 41a 43a 44a

GCN4 121.7a 124.3 119.7 118.7 121.2
1.69b 1.61 1.61 2.05 2.02

I L 125.4 129.7 130.1 120.5 123.1
1.60 1.60 1.86 1.80 1.85

I I 126.5 136.2 133.8
1.62 1.54 1.65

L I 126.7 133.0 135.6 123.9 126.6 126.9 125.0
1.67 1.61 1.55 1.79 1.99 2.00 1.61

V I 122.9 130.4 126.3
1.64 1.49 1.44

L V 128.3 132.8 129.7
1.71 1.57 1.57

V L 127.4 133.8 126.1
1.63 1.59 1.64

L L 131.7 136.5 134.0 126.9 130.3 131.4 132.3 131.8
1.68 1.49 1.49 1.76 1.88 2.34 2.00 1.80

a Configurational free energy per monomer is given by: Gconf = (E(g, r) + (Ng − 1)ln�Vg� −
(Ng − M)ln dvi )/M, where dvi = 2.63, M is the number of chains and E(g, r) is the energy of the most
probable ensemble of structures.

b The average RMSD of structures from the average structure for Monte Carlo runs.
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Table 7. Comparison of the simulation prediction of
dominant species with experiment

Dominant
species from Concentration

Mutation dependence
a d Experiment Simulation from simulation

Wild-type 2 2 99.5:0.5:0a

95:5:0
I L 2 2, 3 63:37:0

22:78:0
I I 3 3 0:100:0

0:100:0
L I 4 4 2:46:52

0:20:80
V I ? 3 0:100:0

0:100:0
L V 3 3 49:51:0

15:85:0
V L (2, 3) 3 2:98:0

0.5:99.5:0
L L 3 3 33:67:0

8:92:0
a Top and bottom rows in each cell indicate the percentage of the

dimers, trimers and tetramers at 2 mM and 200 mM concentration
of a peptide, respectively.

the predictions are in complete agreement with the
experimentally determined dominant species. In the
offending case of the IL mutant, trimers and dimers
are assigned to be the dominant species. Experiment
indicates that only dimers are present. This may
reflect the inaccuracy of the potential as well as
accumulations of errors in the entropy calculation
(for this mutant, the entropy increases with degree of
association). In the case of the VL mutant, dimeric
species make a negligible contribution, and trimers
are assigned to be the dominant species over the
entire concentration regime. In contrast, experiment
indicates that both dimers and trimers are populated
(Harbury et al., 1993). For the VI mutant, trimers are
predicted to be the only species over the entire
concentration regime, whereas experiment shows
that multiple species are populated (Harbury et al.,
1993).

In Table 8, the individual contributions to the free
energy per monomer are shown for every mutant
investigated. The contributions of the different
energy terms to the total average is shown in Table 9.
From Table 8, it is apparent that in all cases the
dominant contribution to the effective entropy
change (60 to 90%) comes from the side-chains; the
effective entropy change for the backbone is smaller,
but non-negligible. This substantial contribution of

A comparison of the predictions with the
experimentally determined degree of chain associ-
ation is presented in Table 7. In five out of eight cases,

Table 8. Dissection of free energy contributions to stability
−ENERGY/kB T Effective ENTROPY/kB

per monomer per monomer

a d Dimer Trimer Tetramer Dimer Trimer Tetramer

GCN4 100.0a 103.7 99.0 21.7d 20.6 20.7
96.2b 100.6 94.9 11.6e 10.9 11.0
41%c 56% 59%

I L 106.4 109.5 108.8 19.0 20.2 21.3
103.9 106.4 105.1 10.1 10.6 11.1
45% 56% 60%

I I 106.0 117.2 115.9 20.5 19.0 17.9
103.3 114.6 112.3 10.9 10.0 9.3
47% 63% 64%

L I 106.4 113.4 118.1 20.3 19.6 17.5
101.7 109.5 114.8 10.8 10.3 9.1
42% 56% 61%

V I 102.2 113.4 109.5 20.7 17.0 16.8
98.4 111.0 107.0 11.0 8.9 8.8

47% 60% 61%
L V 106.4 113.8 111.8 21.9 19.0 17.9

101.9 110.8 108.3 11.7 10.0 9.3
45% 58% 61%

V L 107.6 114.2 106.6 19.8 19.6 19.5
103.9 110.8 102.5 10.5 10.3 10.2
44% 57% 59%

L L 110.9 118.6 116.9 20.8 17.9 17.1
106.4 116.2 113.8 11.0 9.4 8.9
44% 57% 60%

a The average energy of the ensemble of the most probable structures (per monomer)
E(g, r)/M.

b The average energy of all of the structures, computed from Monte Carlo runs.
c Percentage of the total energy, that is long-range (pairwise, templates, contact one

body).
d Configurational entropy contribution of all of the groups (per monomer) calculated

using the local volume factorization approximation. In this Table, we report the values
of effective entropy, i.e. the effective entropy = ((Ng − 1)ln�Vg� − (Ng − M)ln dvi )/M,
where dvi = 2.63 and M is the number of chains.

e The side-chain effective entropy in local volume factorization approximation.
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Table 9. Dissection of the average energy per monomer for parallel dimers,
trimers and tetramers

Dimer Trimer Tetramer
a d −E/monomer −E/monomer −E/monomer

GCN4 96.2a 100.6 94.9
14.9b ; 8.7c ; 18.7d 25.3; 13.6; 17.0 24.0; 15.0; 15.9
39.6e ; 15.9f ; −5.1g 30.9; 16.9; −6.4 27.1; 16.9; −7.2

I L 103.9 106.4 105.1
19.0; 10.6; 19.1 24.9; 17.9; 17.4 27.9; 18.6; 16.3
41.3; 14.9; −5.6 32.8; 16.6; −7.1 28.7; 16.3; −6.4

I I 103.3 114.6 112.3
21.4; 12.4; 18.9 31.4; 23.8; 17.3 33.6; 22.0; 16.4
37.0; 14.9; −6.0 27.5; 16.7; −6.0 26.6; 16.2; −6.0

L I 101.7 109.5 114.8
17.6; 10.7; 18.6 26.5; 18.3; 16.9 31.9; 22.0; 17.2
41.0; 14.8; −5.1 33.0; 16.4; −5.9 30.9; 16.3; −6.6

V I 98.4 111.0 107.0
19.5; 11.4; 18.6 29.4; 20.6; 17.4 29.1; 19.6; 17.0
35.6; 14.9; −5.3 28.7; 16.7; −5.6 27.3; 16.5; −5.3

L V 101.9 110.8 108.3
19.6; 11.5; 18.4 28.3; 19.8; 17.1 31.3; 18.0; 16.3
38.8; 15.2; −5.3 31.3; 16.7; −6.0 29.1; 16.5; −6.2

V L 103.9 110.8 102.5
19.4; 11.4; 18.9 27.9; 18.5; 17.5 25.8; 18.5; 16.4
40.2; 15.1; −4.5 32.3; 16.6; −5.6 28.5; 16.3; −6.4

L L 106.4 116.2 113.8
20.3; 12.1; 18.5 30.2; 18.8; 17.4 30.9; 20.5; 16.7
42.8; 15.0; −6.2 36.8; 16.4; −7.0 32.8; 16.6; −7.3

a The total energy per monomer.
b Pairwise.
c Template.
d Hydrogen bond.
e Side-chain orientational correlations.
f Contact one body.
g R14 energy.
Note: side-chain rotamer energy is in all cases close to −4kT/monomer.

the backbone to the overall internal entropy change
may be related to the slightly exaggerated mobility
of the backbone in our model with respect to the
side-chain mobility. The trend that the internal
entropy of the backbone decreases with the increased
degree of oligomerization is intuitively reasonable,
but in real systems, the magnitude of the internal
entropy change is probably smaller, and the
dominant contribution to the internal entropy change
comes from the side-chains (Novotny et al., 1989).
Since the exposed surface area is larger for the lower
order oligomers, these structures possess more
exposed side-chains, whose effective configuration
entropy is larger. The greatest contribution to the
entropy (largest accessible volume) comes from the
C-terminal ends of the molecules. This prediction is
consistent with the crystal structures of the
wild-type dimer and the LI tetramer. In both cases,
the last two C-terminal residues are highly
disordered (Harbury et al., 1993; O’Shea et al., 1991).

In the case of the wild-type GCN4 leucine zipper,
trimers are favored energetically (we use a constant
volume, number particles and temperature ensem-
ble) and disfavored entropically. In the wild-type,
trimers are more stable by about 2 kT/monomer than
dimers, but over the experimental concentration
regime only dimers are predicted. A plot of the

energy per residue is presented in Figure 11 for the
wild-type dimer (a) and trimer (b). In addition, the
N16V mutant ( = VL) is also depicted. It is interesting
to note that according to the calculation of the energy
per residue, Asn in fact destabilizes the trimer locally
(residues 14 to 18) (by 6.1 kT per monomer plus a
constant value that reflects the effect of the mutation
on the unfolded state). The local destabilization of
Asn in the dimer is smaller (by 4.1 kT per monomer
plus a constant value that reflects the effect of the
mutation on the unfolded state) for residues 14 to 18.
Other parts of the wild-type trimer play a stabilizing
role, and thus, compensation effects are present.
These calculations indicate that the effect of a single
point mutation is not local, but propagates for at least
one helical turn. This is in agreement with studies
(Holtzer & Holtzer, 1990) on tropomyosin fragments,
where compensation effects are also present. We find
that the N16V mutation stabilizes trimers more than
dimers by roughly 2.8 kT per monomer. This number
can be obtained by subtracting the difference in free
energy of trimers of the VL mutant and wild-type
from the difference in free energy dimers of VL and
wild-type (data from Table 6).

We observe that trimers and tetramers prefer Leu
in the a position. Ile in this position favors trimers
and destabilizes tetramers. For the seven mutants of
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the GCN4 leucine zipper, Figure 12a (b) shows a plot
of the total energy difference between dimers and
trimers (trimers and tetramers) as a function of the
sum of the pair energy, template energy and
local-side chain orientational energy difference and
the pair energy difference alone. The sum of the three
above terms is highly correlated (with a correlation
coefficient, R = 0.99) with the total difference in
energy. This suggests that three specific terms (pair
energy, template energy and local side-chain
orientational energy) fully determine the energetics
of the switch between two, three and four-stranded
coiled coils. If one were to assign the single most
important energetic contribution to the switch based
on our simulations, then the pairwise energy would
be the most important, since this is the only term

which in and of itself is well correlated (R = 0.92 to
0.94) with the total energy change (see Figure 12a and
b). The correlation coefficient of the template energy
change with the total energy change is 0.60 in the
dimer-trimer equilibria, and 0.74 for trimer-tetramer
equilibria. The corresponding values for side-
chain orientational preferences are 0.74 and 0.22,
respectively.

Our calculations also suggest that short-range,
intrinsic secondary structure preferences (hydro-
phobic moment) favor lower order oligomers.
Furthermore, the reduction in side-chain effective
entropy on burial in the core of trimers and tetramers
also acts to favor lower order oligomers (Table 8). The
long-range interactions (burial preferences, coopera-
tive side-chain packing interactions, and side-chain

Figure 11. a, The plot of the
energy per residue for dimers. The
single point mutation V16N destabi-
lizes the dimer from residues 12
through 19. b, The plot of the energy
per residue for trimers. The single
point mutation V16N destabilizes
trimers from residues 10 to 20, but
compensation effects are present.
Residues 5, 9, 23 and 29 are, in fact,
more stable in the wild-type trimer.
The open circles represent the VL
mutant, the filled squares indicate
the wild-type mutant, and the open
triangles represent the energy differ-
ence per residue between the wild-
type mutant and the VL mutant.
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Figure 12. a, Correlation between
the energy difference per monomer
between dimers and trimers with
differences coming from various
energy terms. The filled squares
present the total energy difference as
a function of the sum of the pair term,
template term, and hydrophobic
moment term. The open circles
represent the total energy difference
as a function of the pair energy
difference alone. b, Correlation be-
tween the energy difference per
monomer between trimers and te-
tramers with differences coming
from various energy terms. The filled
squares present the total energy
difference as a function of the sum of
the pair term, template term, and
hydrophobic moment term. The
open circles represent the difference
as a function of the pair energy
difference alone.

pairwise interactions, the last being the most
specific) favor higher order oligomers. In higher
order multimers, side-chains in the core (a and d
residues) are more buried and experience additional
favorable hydrophobic interactions. The competition
between short-range and long-range interactions and
the effective side-chain entropy change are the major
factors that determine the dominant species for the
mutants studied here.

Harbury et al. (1993) have explained the different
stabilities of various GCN4 mutants based on the
preferential relative angular packing of different
side-chains. In the known crystal structure, parallel
packing occurs at the a positions in tetramers and d
positions in dimers, whereas perpendicular packing
occurs at the a positions in dimers and d positions in
tetramers. Acute packing is exhibited by trimers.
They argue that Ile and Val side-chains prefer to pack
in the perpendicular or acute fashion, and Leu in the
parallel fashion. This is perhaps the reason why LI
forms trimers, IL tetramers and II trimers. In our

model, however, the related term (see rotamer
population, Table 10) does not exhibit such a trend.
Our explanation of specificity is based on the
competitive effects of the pairwise interactions,
side-chain packing (long-range interactions favor
higher order species) and side-chains orientational
packing preferences Eb (short-range interactions
favor lower order oligomers) together with the loss
of configuration entropy (which favors lower order
oligomers). As indicated in Tables 8 and 9, the
changes in other energetic and entropic terms upon
change of the association state show trends that do
not depend strongly on sequence. It is interesting,
however, to analyze the Leu and Ile rotamer
population in the a and d positions in various
oligomers. Table 10 shows the simulation results for
the frequencies of occurrence of the three most
populated database rotamers of Leu and Ile in the
interfacial positions. For the a position, in 11 out of
12 cases the most statistically populated rotamer in
the database is also the most populated in our
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Table 10. Frequency of the three most populated rotamers
observed in the simulations for IL, II, LI and LL mutants

Dimers Trimers Tetramers
a d a d a d a d

I L 98 45a 92 44a 91 47
2 53 7 49 5 38
0 0 0 7 4 14

I I 99 96 94 84a 93 61
1 4 5 12 3 30
0 0 1 4 4 8

L I 60 91 72 95 48 56a

39 9 26 5 51 30
1 0 2 0 0 14

L L 62 57 65 36a 65 44
38 36 30 56 35 48

0 2 5 8 0 8

The most populated rotamer is shown in bold and the rotamers
are presented in decreasing population in the database.

a The predicted equilibrium species.
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Conclusion
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