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Abstract 

Many existing derivations of knowledge-based statistical pair potentials invoke the quasichemical approximation to 
estimate the expected side-chain contact frequency if there were no amino acid pair-specific interactions. At first glance, 
the quasichemical approximation that treats the residues in a protein as being disconnected and expresses the side-chain 
contact probability as being proportional to the product of the mole fractions of the pair of residues would appear to be 
rather severe. To investigate the validity of this approximation, we introduce two new reference states in which no 
specific pair interactions between amino  acids  are allowed, but in which the connectivity of the protein chain is retained. 
The first estimates the expected number of side-chain contacts by treating the protein as  a Gaussian random coil 
polymer. The second, more realistic reference state includes the effects of chain connectivity, secondary structure, and 
chain compactness by estimating the expected side-chain contact probability by placing the sequence of interest in each 
member of a library of structures of comparable compactness to the native conformation. The side-chain contact maps 
are not allowed to readjust to the sequence of interest, i.e., the side  chains  cannot repack. This situation would hold 
rigorously if all amino acids were the same size. Both reference states effectively permit the factorization of the 
side-chain contact probability into sequence-dependent and structure-dependent terms. Then, because the sequence 
distribution of amino acids in proteins is random, the quasichemical approximation to each of these reference states is 
shown to  be excellent. Thus, the range of validity of the quasichemical approximation is determined by the magnitude 
of the side-chain repacking term, which is, at present, unknown. Finally, the performance of these two sets of pair 
interaction potentials as well as side-chain contact fraction-based interaction scales is assessed by inverse folding tests 
both without and with allowing for gaps. 

Keywords: empirical parameter sets; inverse protein folding; protein structural database; protein threading; 
quasichemical approximation 

Recently, it has become increasingly recognized that the key to the 
solution of the protein folding problem lies in the development of 
potentials that can distinguish the native conformation from the 
myriad possible alternative structures (Jernigan & Bahar, 1996). 
Any successful folding algorithm must also be able to find this 
global energy minimum conformation (Ha0 & Scheraga, 1994). 
One possible way  of addressing this multiple minimum problem is 
the use of reduced or simplified protein  models  (Kolinski & 
Skolnick, 1996; Skolnick & Kolinski, 1996). These represent each 
amino acid by a small number of united atoms, e.g., the a-carbons 
plus the side-chain center of mass positions. Such reduced models 
are designed to produce low to moderate resolution folds, after 
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which recovery of full atomic detail becomes possible (Kolinski 
et al., 1993). Although a number of examples of de novo folding 
have been reported in the literature (Hansmann & Okamoto, 1993; 
Sun, 1993; Hao & Scheraga, 1995; Kolinski & Skolnick, 1996; 
Olszewski et al., 1996; Skolnick & Kolinski, 1996), it is clear that 
better, more specific potentials are necessary (Kolinski et al., 1996). 
Thus, the formulation of empirical energy functions consistent 
with a given reduced protein model has become an area of active 
investigation. In this paper, we present a new derivation of a 
knowledge-based, amino acid pair-specific potential that accounts 
for chain connectivity, compactness, and the presence of secondary 
structural elements. A key question is under what circumstances, if 
any, is the quasichemical approximation, which ignores these fea- 
tures of proteins and treats the chain as being chopped into indi- 
vidual residues, correct? Then, the performance of the set of derived 
potentials is assessed by the ability of the sequence to find the 

676 



Pair  potentials for protein folding 677 

native topology in a variety of inverse folding tests of increasing 
rigor. Such tests constitute a minimal test of the potential; the 
ultimate arbiter of the validity of any potential is  the ability to fold 
many proteins from the random state. 

Over the years, a variety of amino acid pair-specific potentials 
have been formulated (Miyazawa & Jernigan, 1985, 1996). By 
way of illustration, we focus  on potentials that are contact based, 
i.e., where an interaction between two residues is allowed if their 
distance is less than a given threshold, taken to  be 4.5 8, between 
any pair of side-chain heavy atoms. In this instance, the average 
number of contacts per residue ranges from about 1.5 for Gly to 
6.8 for Tyr. However, the general approach can be used to derive 
potentials of mean force of any functional form, in particular lon- 
ger  distance cutoffs can be used (Jernigan & Behar, 1996). In the 
classical approach formulated originally by Tanaka and Scheraga 
( I  976) and subsequently followed by many other investigators, 
one uses a library of native-like structures to extract the relative 
observed frequency of side-chain contacts between a given pair of 
amino acids y and p, p y r .  This frequency is then compared to that 
expected in some reference state where there are  no specific side- 
chain interactions p”y .  The potential of mean force between amino 
acids of type y and p is then given by 

E y p  = -kBTln(P,,/P”,). ( 1 )  

Thus, one implicitly assumes a Boltzmann distribution of energies 
holds for the distribution of contacts obtained in a library of native- 
like folds. Recently, a number of theoretical and empirical argu- 
ments have suggested that this assumption is justified (Bryant & 
Lawrence, 1991; Finkelstein et al., 1995). 

The origin of the differences between extant pair interaction 
scales resides predominantly in the different choices of the refer- 
ence state (Godzik, 1996). In a recent paper (Godzik et al., 1995), 
we presented a preliminary comparison of various scales and their 
associated reference states. Jernigan and Behar (1996) have also 
given an excellent review of this problem. In practice, different 
investigators have chosen various reference states. These include 
the unfolded state, a compact state of inert residues, a compact 
state where hydrophobic residues prefer to be buried, and an ideal 
mixture where the  excess energy of mixing is zero (see Equa- 
tions  3a and 3b) (Godzik et al., 1995). 

To date, all statistical potentials based on Equation I have in 
common  the quasichemical approximation, i.e., all neglect the con- 
nectivity of the chain. Basically, the chain is viewed as a collection 
of disconnected units (that may or may not be of different size) that 
undergo random mixing. Thus,  the  expected frequency of yp con- 
tacts in a quasichemical reference state is 

Poyp = fyf,. 

where& is a residue-dependent, compositional-based property such 
as the mole fraction, xy , or the side-chain contact fraction, &, , of 
residue type y .  Here, 

xy = - nY 

2 n, 

and 

Here, ny is  the number of residues and I, is the average number of 
contacts of residue type y .  

A number of conceptual problems are associated with the quasi- 
chemical approximation. First of all, it ignores chain connectiv- 
ity. As pointed out by Jemigan and Bahar (1996), this neglect of 
chain connectivity and its attendant influence on the correlation 
between interactions might be a very severe approximation. It 
also ignores the presence of secondary structural elements in the 
native state. Ideally, one would like a reference state having 
both features, but where the interaction between pairs of resi- 
dues is nonspecific. One path toward the creation of an approx- 
imate reference state that possesses such properties was suggested 
by Maiorov and Crippen (1992). They developed a potential by 
fitting a large number of parameters to a library of structures 
and demanded that the native sequence in its native structure 
has the lowest energy. Interestingly, we have shown (Godzik 
et  al., 1995) that the resulting pair interaction scale is highly 
correlated to one  of the pair scales derived by Miyazawa and 
Jemigan (1985, 1996), a knowledge-based, statistical scale based 
on the quasichemical approximation. 

In this paper, we propose two new reference states for the cal- 
culation of the empirical pair interaction energy. The first reference 
state simply includes the restraint of chain connectivity and is 
based on the statistics of Gaussian random coil chains (Flory, 
1953; Mattice & Suter, 1994). Gaussian random coil chains  de- 
scribe the conformational behavior of polymer chains that lack 
excluded volume interactions (Flory, 1953; Mattice & Suter, 1994). 
The advantage of this approach is that the contact probability can 
be calculated analytically, and thus, this reference state serves to 
illustrate the basic features of the more general treatment. Next, in 
the spirit of Maiorov and Crippen (1992), we propose a more 
realistic “native” reference state, whereby the reference contact 
probability is obtained by inserting or “threading” each sequence 
through a library of structures that are essentially as compact as the 
native state, but where all interaction specificity is ignored. This 
reference state accounts for the constraints of chain connectivity, 
protein chain compactness, and the presence of regular secondary 
structure. 

In all cases, it is very illustrative to dissect a given interaction 
scale into its ideal and excess components (Godzik et al., 1995). 
The ideal component of the pair interaction energy is defined by 

This term may also include properties that depend on a single 
residue (e.g., burial preferences). In an infinite system, it does not 
provide any pair interaction specificity, but it can contribute in a 
finite system due to surface effects. In general, such specificity is 
provided by the excess pair interaction component defined by 

In previous work, we demonstrated that the excess component is 
essentially independent of the reference state used to derive the 
statistical potential (Godzik et al., 1995). 

The outline of the remainder of this paper is as follows. We 
begin with a derivation of the compact Gaussian chain (Flory, 
1953; Mattice & Suter, 1994) reference state and compare the 
resulting scale with that obtained using the quasichemical approx- 
imation. Next, we present the native reference state, which in- 
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cludes the effects of chain connectivity, protein compactness, and 
a native-like distribution of secondary structure on the expected 
contact frequency in a system lacking preferential side-chain in- 
teractions. We also  explore the relationship of this scale to the 
corresponding scale based on the quasichemical approximation. 
Then, we examine  a  contact fraction-based reference state and 
clarify the difference between scales derived using mole fraction 
and contact fraction-based reference states. This is followed by a 
comparison of the various derived scales. To validate the scales in 
inverse folding tests, we examine their relative performance. We 
assess the relative ability of the potentials to  do threading when 
gaps in the sequence are not permitted. This is termed “gapless 
threading” in what follows. In gapless threading calculations, the 
object is to match the sequence to its native structure. This test is 
a necessary but far from sufficient means of assessing the utility of 
a given interaction scale. For a set of test sequences, we then 
examine the ability of the potentials to identify the correct topol- 
ogy in a structural library, at least one of whose members has the 
same fold and where gaps are permitted. All proteins in this struc- 
tural library have random homology to the test sequences. We 
conclude with a discussion of the significance of the results and the 
directions of future research. 

Results 

In what follows, we present two new derivations of the contact 
potential between pairs of amino acids. Furthermore, because a 
variety of scales based on different reference states are introduced 
throughout this paper, to avoid confusion, we summarize the prop- 
erties of the reference states in Table 1A. The various scales that 
are based on the different reference states  are summarized in 
Table 1B. 

Gaussian chain reference state 

By  way  of a very simple illustration, we consider a protein whose 
contact frequency obeys Gaussian chain statistics (Flory, 1953). 
Let the eth protein contain N ( e )  residues and C ( e )  total side-chain 
contacts. Let ai be the amino acid at the ith position in the se- 
quence. In a Gaussian random chain, the probability that the side 
chains at positions i a n d j  in the sequence would be in contact and 
are occupied by amino acids of type y and p is 

p , ( y , p , i , j )  = v(i - j ) ” . 5  &&uj, (44  

v is a constant that will cancel out in subsequent analysis and 

Table 1. Properties of the reference states and various  scales that are based on the different reference states 

A. Summary  of  reference  states  used  to  estimate  side-chain  contact  probability  in  noninteracting  systems 

Reference state Description of reference state 

Quasichemical-mole fraction Disconnected collection of units of identical size that interact randomly. 
reference state Contact probability is the product of the mole fractions. 

See Equations 1, 2a, and 2b. 

Quasichemical-contact fraction Disconnected collection of units that interact randomly and where each residue type has a 

Contact probability is the product of the contact fractions. 
See Equations 1, 2a and 2c. 

reference state different number of contacts. 

Gaussian reference state Contact probability is calculated from that exhibited by a Gaussian-random coil polymer chain. 
See Equations 7, 9c,  and  9d. 

Native reference state Library of structures excised from real proteins that have comparable compactness as the native 
fold. The presence of protein-like secondary structure and packing patterns are included, but 
there is no pair specificity. The side-chain contact maps that dictate  the allowed interactions are 
static and excised from the experimental structure. See Equations 12a-12d. 

B. Summary  of  various scales and  the  reference states on which  they  are  based 

Scale Description of reference state 

Gaussian Gaussian chain reference state. Accounts for chain connectivity in the calculation of the expected 
contact frequency in a randomly interacting system. 

Native Native reference state. Accounts for chain connectivity, secondary structure, and protein com- 
pactness in the calculation of the expected contact frequency in a randomly interacting system. 

Native-filtered Based on the native scale, but considers only strongly interacting pairs of residues. 

Contact fraction-averaged Quasichemical-contact fraction-based reference state that includes both buried and exposed res- 
idues and calculates the contact fraction from the actual protein structure. 

See Equations 16a and 16b. 

GKS scale Quasichemical-contact fraction-based reference state that includes only buried residues and cal- 
culates the contact fraction from the actual protein structure (Godzik et al., 1992). 

Native-contact fraction Quasichemical-based reference state threads each sequence through a library Of StrUctUreS of 
comparable compactness to the native state and calculates the expected number of contacts 
using the contact fraction of every residue type in each of these compact structures. See 
Equation 2 1 a. 
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%a, = { 1 i f y = a i  

0 otherwise 

t jY . * ,  is  the probability that the amino acid at position i is occupied 

Observe that pg  can be written as the product of a structural part 
that depends on the location in the structure and  a part that depends 
on the amino acid identities at positions i and;. Parenthetically, we 
note that the total number of contacts in a Gaussian chain is 
4 ( m  - I)', which, for reasonable values of N(C) is 4N(C).  
The proportionality of the number of contacts with protein size  is 
consistent with observations on protein structures. 

Thus, the total probability that residues of type y and p will be 
in contact in the Cth structure is 

by Y .  

The relative probability that amino acids y and p are in contact is 

t = l  'I'l 

Let us define  the Gaussian chain contact probability by 

p ( i , j )  = v(li ( 6 4  

Substituting Equation 5a into Equation 5b gives 

N ( e ) N ( e )  x x P(iLi)Sy.qSp,a, 

The denominator of Equation 6b follows from Equation 5b, be- 
cause the summation is  over all possible pairs of amino acid types. 

The expected number of contacts for  a chain whose relative 
contact probability is determined by Gaussian chain statistics is 

Nexp.gauss(Y>p>e) = C ( C ) p g , r & 3 ~ ~ C ) .  (7)  

Now, the total number of observed contacts in the Cth protein, 
C(C), can be calculated from 

Nabs( y ,  p,C) is the actual number of observed side-chain contacts 
between amino  acids in the Cth protein of type y and p. 

Assuming that the contacts between amino acid pairs in the 
database of S,, protein structures obey a Boltzmann distribution, 
the pair interaction energy between amino acids of type y and p is 
given by 

Here, kB is Boltzmann's constant, and T is the absolute tempera- 
ture. The scale that uses the Gaussian chain approximation to the 

reference state to estimate the relative contact probability is called 
"Gaussian" in what follows. The parameters for this scale are 
compiled  in Table 2. 

A slightly more convenient formulation that holds when the total 
number of expected and observed contacts are different is obtained 
by expressing Equation 9a in terms of the ratio of the observed and 
expected contact probabilities for residues of type y and p in all 
S,,, protein structures, that is, 

and 

Thus, Equation 9a can be rewritten as 

Relationship of  the Gaussian chain and quasichemical-mole 
fraction-based, reference states 

We first observe that p(i ,  j )  defined in Equation 6a is a function of 
I i  - j l .  If we neglect essentially inconsequential end effects, the 
sum over amino acids of type y is simply x , ( [ )  times the sum over 
all i, where x , ( [ )  is the mole fraction of amino acid type y in the 
Cth structure. 

Now,  we invoke the fact that the probability of finding an amino 
acid at any position j is random and is just proportional to the mole 
fraction of p. These two approximations give the quasichemical- 
mole fraction-based approximation for PR,rPr: 

In fact, we note that Equation loa holds for any functional form 
p ( i , j )  = p ( l i  - ;I). Thus, with any contact function of this type 
and given a random amino acid sequence distribution, Pg,rel should 
be well approximated by the quasichemical approximation. Fi- 
nally, we note that, even if p ( i , j )  # p(li - ;I), we can repeat the 
derivation by approximating Equation 6a as 

with 

where the brackets denote the average over all positions i and j in 
the chain. Thus, we are factorizing the contact probability into a 
geometric part and an amino acid composition-dependent part. 
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Table 2. Pair interaction parameters  derived using the Gaussian chain reference state 

Gly Ala Ser Cys Val Thr Ile Pro Met Asp Asn Leu Lys Glu Gln Arg His Phe Tyr Trp 

Gly 1.8 1.4 1.0 1.1 0.8 0.6 0.6 1.0 0.6 0.6 0.6 0.6 0.7 1.0 0.7 0.3 0.8 0.4 0.2 0.2 
Ala 1.4 1.1 0.9 0.5 -0.1 0.6 -0.3 0.8 -0.2 0.9 0.8 -0.1 1.0 1.1 0.6 0.5 0.4 -0.2 -0.2 -0.5 
Ser 1.0 0.9 0.6 0.4 0.5 0.4 0.4 0.7 0.3 0.3 0.5 0.4 0.6 0.2 0.3 0.2 0.0 0.2 0.2 0.1 

Val 0.8 -0.1 0.5 -0.5 -1.0 -0.1 -1.1 0.2 -0.7 0.9 0.5 -1.1 0.5 0.5 0.2 0.0 0.1 -1.1 -0.7 -1.0 
Thr  0.6 0.6 0.4 0.2 -0.1 0.2 -0.2 0.4 -0.1 0.1 0.1 -0.1 0.5 0.1 0.2 -0.1 0.0 -0.2 -0.2 -0.2 
Ile 0.6 -0.3 0.4 -0.6 -1.1 -0.2 -1.3 0.1 -0.9 0.5 0.5 -1.3 0.3 0.3 0.0 -0.2 0.0 -1.2 -0.9 -1.3 
Pro 1.0 0.8 0.7 0.3 0.2 0.4 0.1 0.7 -0.1 1.0 0.5 0.1 0.7 0.6 0.2 0.1 0.1 0.0 -0.4 -0.7 
Met 0.6 -0.2 0.3 -0.3 -0.7 -0.1 -0.9 -0.1 -1 .1  0.5 0.2 -1.0 0.3 0.1 -0.1 0.2 -0.3 -1.3 -1.0 -1.4 

CYS 1.1 0.5 0.4 -1.7 -0.5 0.2 -0.6 0.3 -0.3 0.5  0.3 -0.4 1.0 0.8  0.2  0.4 -0.1 -0.8 -0.5 -0.9 

Asp 0.6 0.9 0.3 0.5 0.9  0.1 0.5 1.0  0.5  0.4  0.0  0.6 -0.2 0.4 0.2 -0.6 -0.1  0.4 -0.1 -0.1 
Asn 0.6 0.8 0.5 0.3 0.5 0.1 0.5 0.5 0.2 0.0 -0.1 0.4 0.2 0.1 -0.1 -0.1 0.0 0.0 -0.2 -0.1 
Leu 0.6 -0.1 0.4 -0.4 -1.1 -0.1 -1.3 0.1 -1.0 0.6 0.4 -1.2 0.3 0.4 0.1 -0.1 -0.1 -1.3 -0.9 -1.3 
LYS 0.7 1.0 0.6 1.0 0.5 0.5 0.3 0.7 0.3 -0.2 0.2 0.3 1.5 -0.4 0.2 0.7 0.5 0.3 -0.4 -0.1 
Glu 1.0 1.1 0.2 0.8 0.5 0.1 0.3 0.6 0.1 0.4 0.1 0.4 -0.4 0.9 0.3 -0.6 0.0 0.3 -0.2 -0.2 
Gin 0.7 0.6 0.3 0.2 0.2 0.2 0.0 0.2 -0.1 0.2 -0.1 0.1 0.2 0.3 -0.1 0.0 0.0 -0.1 -0.3 -0.4 
Arg 0.3 0.5 0.2 0.4 0.0 -0.1 -0.2 0.1 0.2 -0.6 -0.1 -0.1 0.7 -0.6 0.0 -0.3 -0.2 -0.3 -0.6 -0.6 
His 0.8 0.4 0.0 -0.1 0.1 0.0 0.0 0.1 -0.3 -0.1 0.0 -0.1 0.5 0.0 0.0 -0.2 -0.4 -0.4 -0.7 -0.8 
Phe 0.4 -0.2 0.2 -0.8 -1.1 -0.2 -1.2 0.0 -1.3 0.4 0.0 -1.3 0.3 0.3 -0.1 -0.3 -0.4 -1.5 -1.0 -1.5 

Tyr 0.2 -0.2 0.2 -0.5 -0.7 -0.2 -0.9 -0.4 -1.0 -0.1 -0.2 -0.9 -0.4 -0.2 -0.3 -0.6 -0.7 -1.0 -0.8 -1.2 
Trp 0.2 -0.5 0.1 -0.9 -1.0 -0.2 -1.3 -0.7 -1.4 -0.1 -0.1 -1.3 -0.1 -0.2 -0.4 -0.6 -0.8 -1.5 -1.2 -1.4 

Using Equation IOc, the quasichemical approximation to Equa- 
tion 7 is 

Ne!:Eauss(AyrA&,e) = c ( e ) x y ( e ) x , ( O .  (1 la) 

The quasichemical-mole fraction-based approximation to the scale 
obtained using the Gaussian reference state is: 

E::ii:(Y,F) = -kBTh [s,;;:: x N o b s ( Y I k e )  1. 
z Ne!:E,uAr,P>Q 
e = l  

(1 Ib) 

The correlation coefficient between the two scales defined in 
Equations 9a and 1 Ib is  0.99. We can also calculate the difference 
between the energy obtained using the Gaussian reference state 
and that obtained from the quasichemical-mole fraction approxi- 
mation. The average value of this difference is 0.043kBT. The 
correction term is small because the distribution of amino acids 
along the protein sequence is essentially random, and one can 
factorize the contact probability in a system without preferential 
side-chain interactions into  a structural part and an amino acid 
composition-dependent part. Thus, we conclude that the quasi- 
chemical approximation to the Gaussian reference state is, on av- 
erage, excellent. 

Native reference state 

Next, we present a new derivation of the contact potential between 
pairs of amino acids designed to account for chain connectivity, the 
fact that native conformations of proteins are compact, and that 
they possess substantial amounts of regular secondary structure. 
That is, we wish to obtain the potential of mean force between 
residues, suitably (or at least approximately) corrected for the pres- 

ence of protein-like environments, but where no specific inter- 
actions between pairs of residues occur. In this native reference 
state, we estimate the expected contact probability for different 
pairs of amino acids where there are no specific amino acid pair 
interactions by threading each protein sequence through a library 
of compact fragments excised from native protein structures. To 
enforce native-like compactness, the radius of gyration of all such 
excised protein fragments must be within 10% of the native con- 
formation of the sequence of interest. 

For the kth such compact subfragment in the rnth protein in a 
library of SI,, total structures, the probability that residues y and p 
are in contact is 

N ( O N ( C )  

C i + k . J + k ( m ) 6 y , a , 6 & , , ,  

p " ( y , p , N ( t ) ; k , m )  = 
! = I  J = I  

N ( e )  N ( e )  

Ci+k.j+k(m) 
i = l  j - 1  

(12a) 

where N ( e )  5 N(m); C&) = 1 (0) if residues at positions i and 
j in the rnth protein are (not) in contact. In Equation 12a, the 
denominator is  just the total number of contacts in the compact 
subfragment starting at residue k and finishing at residue N ( C )  + 
k - 1 in the rnth protein and is given by 

N ( e  ) N(e ) 

i = l  j - 1  
C ( k , m , e )  = C i + k . J + k ( m ) .  ( 12b) 

Note that the contact map is assumed to remain the same when the 
sequence from the Cth protein is threaded into the structure of the 
mth protein. This  is  a crucial approximation whose effect on the 
resulting potential requires additional investigation. However, it 
would be true if all amino acids were of the same size so that a 
sequence can be threaded into one of these protein-like structures 
without causing the side  chains to repack. 
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The total probability that residues of type y and p will be in 
contact in the native reference state  is 

. .  

In Equation 12c, the numerator is simply the number of contacts 
between amino acids of type y and p in appropriately compact 
substructures, and the denominator is simply the total number of 
contacts in the entire library of such compact subfragments. 

We next require the relative contact probability that is actually ob- 
served in the library of S,, structures,  a quantity given by Equa- 
tion 9b. If we once again assume that the observed contact frequency 
in the structural database obeys a Boltzmann-like distribution, then 
the potential of mean force of a y and p contact relative to the  case 
where they lack pair-specific interactions is 

‘%ofiue(y,p) = -kBTln(Pobs(y, p)Ipo(y,  ( 1 2 4  

The resulting scale based on the native reference state is presented 
in Table 3A. 

Relationship of the native and quasichemical-mole 
fraction-based reference states 

The quasichemical-mole fraction-based approximation to Equa- 
tion 12a is 

and to Equation 12c is 

Thus, the scale based on the quasichemical-mole fraction-based 
approximation to the native-like reference state, native-mole frac- 
tion is 

The correlation coefficient between the scale based on the native ref- 
erence state, Equation 12d, and the quasichemical approximation to 
the native reference state is 0.96. The mean value of the difference 
between the pair energy calculated on the basis of the native ref- 
erence state  and  the  analogous  quantity  calculated in the  quasi- 
chemical approximation, i.e., the native-mole fraction reference state, 
is 0.027. This demonstrates that the quasichemical approximation 
is again an excellent one. It does not arise from neglect of chain con- 
nectivity or the presence of protein-like secondary structure (Equa- 
tion 12a explicitly includes both features). Rather, this result emerges 
because the  amino acid sequence distribution is essentially random 
and repacking effects accompanying the threading of a given se- 
quence into another structure are ignored. 

Filtered version of the scale based 
on the native reference state 

We have also considered a filtered version of the pair interaction 
scale based on the native reference state. The “native-filtered’’ 
scale only considers strongly interacting residues and sets the re- 
mainder of the interactions to zero. If I ~ , , ~ ~ ~ ~ ( y .  p)1 < 0.8, then set 
~ ~ ~ ~ ~ ~ ~ , f i l ~ ~ ~ ~ d ( y , p )  = 0. Otherwise, if enaliue(y,p) > 0.8, then it is 
replaced by the average value of over all such residue pairs, 
E ~ , , , ,  = 1.1. Similarly, if ~ ~ , ~ ~ ~ ~ ( y ,  p)  < - 0.8, then it is replaced by 
the average value over all such residue pairs, = - 1.2. 

Quasichemical-contact fraction-based reference state 

We next consider a reference state where the frequency of expected 
side-chain contacts is calculated from the contact fraction of res- 
idues defined in Equation 2c;  this  is a quasichemical-contact fraction- 
based reference state averaged over  a library of structures; hence, 
it is called “contact fraction-averaged.” Let the total number of 
side-chain contacts made by amino  acids y and p in the 8th 
structure be Nobs(y.p,8). For the Cth structure, the fraction of 
contacts made by amino acid type y is 

The numerator is the total number of actual contacts made by 
residues of type y with all other residues in the 8th structure. The 
denominator is  the total number of contacts in the t th  structure and 
is given by Equation 8. The expected number of contacts between 
amino acids y and p is 

The pair potential in the quasichemical-contact fraction-averaged 
approximation is simply 

where the observed contact probability is given by Equation 9b, 
and the expected contact probability is 

e= I 

The resulting pair scale differs from the contact fraction-based, 
GKS scale derived originally by Godzik et al. (1992, 1995) in that 
the GKS scale  considers only buried residues. 

Comparison of the scales based on different reference states 

As conjectured by a number of investigators (Park & Levitt, 1996), 
the values of the energy parameters presented in Tables 2 and 3, as 
well as other  scales (Godzik et al., 1997), suggest that one does not 
need a full set of 210 parameters (involving the 20 amino acids) to 
describe the interactions between the various amino acids. Rather, 
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the amino  acids can be clustered into groups. Various criteria for 
clustering these scales are explored in a series of follow-up papers 
that examine not only the parameter sets described here, but other 
parameter sets as well (Godzik et al., 1997). 

In what follows, we discuss  scales based on  a total of four dif- 
ferent  reference  states,  whose  assumptions are summarized in 
Table 1A. There are the two quasichemical-based scales that use ei- 
ther mole fraction- or contact fraction-based units. Then, there is the 
Gaussian chain reference state, which includes chain connectivity. 
Finally, there is the native reference state, in which effects of chain 
connectivity, compactness, and secondary structure are all included. 
Furthermore, given a reference state, various ways of actually im- 
plementing the calculation of the expected number of contacts ex- 
ist. Table 1B summarizes the six scales that are based on various 
approximations to the reference states presented in Table IA. In 
Table 4, the correlation coefficients between six scales, native, native- 
filtered, Gaussian, contact fraction-averaged, GKS (Godzik et al., 
1992). and native-contact fraction, which is defined below, are pre- 
sented. Each scale takes its name from the reference state upon which 
it is based. The Gaussian scale and the native scale are highly cor- 
related, with a correlation coefficient, r, of 0.96. This makes sense 
because the reference states in  both scales are well approximated by 
a quasichemical-mole fraction-based reference state. They are even 
more correlated than the native and native-filtered scales, which share 
the native reference state, but where the latter is a truncated version 
of the scale. Similarly, the quasichemical scales that employ con- 
tact fractions for the calculation of the contact frequency without 
specific interaction preferences, GKS and contact fraction-averaged, 
are highly correlated, with a correlation coefficient r = 0.73, but  they 
are basically uncorrelated with  all scales derived with a mole fraction- 
based reference state. The origin of the differences between the two 
kinds of  scales based on mole fraction and contact fraction is ad- 
dressed in the next section. 

Dlfference between the mole fraction- and contact 
fraction-based energy scales 

We consider here a simplified derivation that demonstrates the 
essential difference between energy scales derived on the basis of 
the mole fraction- and contact fraction-based reference states. Con- 
sider  a large system containing C total contacts. Then, the mole 
fraction-based pair interaction energies is given by 

with xy defined in Equation 2b. Similarly, the contact fraction- 
based pair interaction energy is given by 

with &, defined in Equation 2b. 

both scales, it is straightforward to show that 
Consider now the excess energy defined in Equation 3b. For 

That is, the excess energy is independent of the reference state. 
Averaging over  a set of structures as in Equation 13b or 16b 
modifies this result only slightly. 

Because the excess interaction energy does not depend on the 
choice of either  a contact or mole fraction reference state, the 
difference in interaction energies between the two scales must 
reside in the ideal component of the pair potential defined in Equa- 
tion 3a. Consider then, the difference in the ideal component be- 
tween the contact and mole fraction reference states: 

which can be rewritten as 

Here, the mean number of contacts per residue averaged over all 
residues is 

Table 4. Comparison of pair potentials  derived with different reference states 

Contact 
Reference Native, fraction- 

state Native filtered Gaussian averaged GKS [/Ea Idealb Excess" 

Native - 1.74  0.80  0.16 
Native, filtered 0.82 - 1.34  0.66  0.33 
Gaussian 0.96 0.3 I - 1.71 0.78  0.12 
Contact fraction-averaged 0.38 0.34 0.43 - 0.73 0.04 0.7 1 
GKS 0.26 0.22 0.3 1 0.73 - 0.86 0.15 0.77 

Native-contact 0.98 0.81 0.97 0.43 0.27 1.71 0.77  0.2 1 

is the average magnitude of the ideal component of the  pair potential to the excess component, calculated for the diagonal and 
upper  triangular elements of the  appropriate interaction matrix. 

bCorrelation coefficient  between the ideal component of the  pair interaction matrix  and  the full interaction matrix. 
'Correlation coefficient between the excess component of the pair interaction matrix  and the full interaction matrix. 
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Thus, if for attractive (repulsive) pairs the mean number of 
contacts for residue A, is larger (smaller) than Z, then the magni- 
tude of the ideal component will be smaller  for the contact fraction- 
based scale than for the mole fraction scale. Because  the  excess 
component is reference state-independent, the ratio of the average 
magnitude of the ideal, I ,  to the excess  component, E, will be 
smaller in the contact fraction-based scale. This observation is 
certainly true for the aromatic residues and, based on explicit 
calculation (see Table 4), it holds in general. Thus,  the  GKS and 
contact fraction-averaged scales have an I/E of 0.86 and 0.73, 
respectively. In contrast, all three scales, native, native-filtered, 
and Gaussian, which are basically equivalent to a quasichemical- 
mole fraction-based reference state, have an I/E of I .74, 1.34, and 
1.7 1, respectively. 

Other differences exist between scales  whose reference state is 
based on mole fraction and contact fraction, respectively. The spread 
of interactions is more substantial in all the mole fraction-based 
scales; under certain circumstances, this might impart enhanced 
resolution. The standard deviations of the parameters are 0.69 and 
0.64 in the scales based on the native and Gaussian reference 
states, respectively. In the native scale, hydrophobic residues are 
attractive, like charged residues are mainly repulsive or at worst 
indifferent, and unlike charge pairs are attractive. In contrast, in the 
contact fraction-averaged and GKS scales, the standard deviations 
of the parameters are both 0.32. In the GKS scale, we find that 
Glu-Glu or Lys-Lys pairs are attractive, and Asp-Glu pairs are 
indifferent, but Glu-Lys pairs are attractive. In the native scale, 
Glu-Glu, Lys-Lys, and Asp-Glu pairs are repulsive, but surpris- 
ingly, Glu-Lys pairs are inert, and Asp-Lys pairs are repulsive. This 
is consistent with the work of Lumb and Kim (1995a, 1996) and 
appears to be  in disagreement with the work  of Hodges et  al. 
(Lavigne  et al., 1996). 

Additional  analysis of the ideal and excess 
contributions to the pair energy 

The statement that mole fraction-based scales have a strong ideal 
component means that the interaction between many pairs of res- 
idues can be treated as the arithmetic average of an apparent single- 
residue dependent property. However, not all interactions are of the 
ideal type, so it is of interest to dissect the scales into their excess 
and ideal components. In the interest of brevity, we focus on the 
scale derived using the native reference state (see Table 3B,C), 
where the scale is decomposed into the ideal energy and  excess 
energy contributions, respectively. 

If one focuses on Table 3C, one of the more striking  features is 
that pair interactions between the hydrophobic residues Val, Ile, 
Leu are ideal, i.e., the excess contribution is essentially zero. In 
addition, the excess interaction energies between these residues 
and Met, Phe, Tyr, and Trp  are very small. The dominant devia- 
tions from ideality are associated with the interactions between 
hydrophobic and polar residues, which are repulsive, and the strong 
nonideal component  associated with certain polar-polar inter- 
actions such as Glu-Lys, whose excess energy is attractive. Inter- 
estingly, the excess energy for like charge group interactions is 
essentially zero. Their repulsive interactions are reflected in the 
large ideal term. These  combine in the full scale to give strong 
repulsions between like charges; in contrast, interactions between 
unlike charged groups, such as Glu-Lys or Asp-Lys, are  either inert 
or weakly repulsive. In other words, the pair interaction specificity 
is not due to specific interactions between hydrophobic residues, 

but rather is due to pair interactions involving pairs of residues 
having at least one nonhydrophobic partner. The importance of 
polar interactions in destabilizing alternative structures has been 
suggested previously on  the basis of a number of experiments 
(Lumb & Kim, 1995b); these pair scales are consistent with this 
conjecture. On the basis of Tables 2 and 3, this is not to say that 
pair interactions between hydrophobic partners are not strong, be- 
cause they most certainly are; rather, they are not particularly 
specific on a per pair basis. 

Native-contact  fraction reference state 

The contact fraction reference state derived in Equation 16 calcu- 
lates the contact fraction from the actual structure of the sequence 
of interest. As shown below, this restriction in fact gives rise to the 
difference between the contact and mole fraction-based scales. To 
explore this point further, we introduce a final reference state, 
“native-contact,’’ where the contact fraction-based reference state 
is used, but the expected contact frequency is obtained by thread- 
ing the sequence of interest through all compact fragments in the 
structural library. 

Suppose that we repeat the derivation as in Equation 16, but now 
calculate the contact probability as the product of the contact frac- 
tions averaged over all structures: 

Here, d ( k , m , t )  is the contact fraction for  the eth sequence threaded 
into the k,mth compact substructure. Thus, the native-contact ref- 
erence  state estimation for the energy is given by 

As shown in Table 4, the correlation coefficient of this scale with 
the Gaussian reference state scale (defined in Equation 6b) is 0.97, 
and the scale based on the native reference state (defined in Equa- 
tion 13c) is 0.98. Basically, as the sequence is threaded through a 
library of structures, the average number of contacts for a given 
residue type converges to the mean number of contacts averaged 
over all residues. Then, as indicated by Equation 20b, the differ- 
ence between the mole fraction- and this contact fraction-based 
scale goes to zero. In other words, when the sequence is uncoupled 
from the structure, then the contact fraction- and mole fraction- 
based scales converge. 

Per$ormance of various scales in threading tests 

Gapless threading 
In Table 5, we summarize the results of a gapless threading test. 

In addition to the 87 proteins used as a testing set, we also include 
the original structures used to derive the statistical potentials. To 
assess the sensitivity of a given potential, unlike in more standard 
threading tests, we assign the structure based on its pair energy 
alone. That is, we do not randomize the sequence in the structure, 
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Table 5. Comparison of various pair potentials 
in gapless threading testsa 

Average 2-score of 
Number of correctly correctly assigned 

Scale assigned sequences sequence 

Native 82 of 87 - 8.96 
Native-filtered 81 of 87 -9.54 
Gaussian 83 of 87 -9.71 
Contact fraction-averaged 57 of 87 -4.10 
GKS scale 24 of 87 - 1.48 

aEighty-seven test sequences were threaded through a library of 3 11 
structures, including the 224 sequences used to derive the pair potential. 

subtract the average energy of the randomized sequence in the 
structure, and then rank the structures on this basis. There is a clear 
qualitative difference between the two kinds of scales. Those hav- 
ing a mole fraction-based reference state perform better consis- 
tently. Interestingly, on the basis of the average Z score, the Gaussian 
chain-based scale is the most specific. But in practice, the differ- 
ences in performance of the three mole fraction-based scales in 
gapless threading are not significant. Note that the native-filtered 
scale performs marginally worse than the native scale, but it has a 
better Z score. This suggests that there may be a problem with 
using Z scores alone to assess the utility of a given interaction 
scheme. 

Inverse folding with gaps 

Next, we explored the sensitivity of a given potential as assessed 
by its ability to find a similar structure in a library of sequentially 
unrelated folds. We have found that the inclusion of an amino acid 
pair-specific, local secondary structure preference term enhances 
accuracy (Jaroszewski & Godzik, unpubl.). The weight of the local 
interaction energy term (W,,,) was optimized independently for 
each parameter set and equals 2.0 for all scales, except  for the GKS 
scale, where W,,, = 1. As presented in Tables 6 and 7, the scale 
that detects the largest percentage of correctly predicted folds, 
48%, uses the native reference state. Interestingly, the next best 
performing scale is the GKS scale, with a maximum of 44% struc- 
tures recognized, which is followed by the Gaussian reference state 
scale with 40% recognized. The native-filtered scale performs mar- 
ginally poorer than the other parameter sets. Thus, by including a 
richer variation in pair interactions some additional misfolded struc- 
tures are eliminated. This set of results points out that simply using 
gapless inverse folding (and/or the mean Z score in gapless inverse 
folding) to assess the ability of a given potential to recognize 
topological cousins can be very misleading. 

As illustrated by Table 6, the optimal values of gap penalties are 
different for each parameter set. The optimal gap penalties for the 
Gaussian and native parameter sets are higher than for the GKS 
parameter set. This  is the consequence of the lower absolute values 
of the GKS interaction parameters. 

As summarized in Tables 5,  6, and 7, based on this battery of 
tests, the native reference state-based scale is the best. It does very 
well in gapless inverse folding, as well as in detecting structural 
homology when gaps are permitted. The behavior of the filtered 
version of this scale is much more uneven. This points out that 
different scales may work well in one test, but not in another. Thus, 

Table 6. Sensitivity of detection of correct folds" 

Native  parameter set 
gap\ext 0.3 
2.0 36 
4.0 36 
8.0 24 

Native-filtered  parameter set 
gap\ext 0.1 
1 .o 16 
2.0 32 
4.0 32 

Gaussian  parameter set 
gap\ext 0.1 
1 .o 36 
2.0 32 
4.0 32 

GKS parameter set 
gap\ext 0.3 
2.0 36 
4.0 36 
8.0 28 

0.6 
44 
44 
28 

0.3 
24 
32 
36 

0.3 
32 
40 
28 

0.6 
36 
44 
24 

I .2 
32 
48 
32 

0.6 
24 
32 
40 

0.6 
32 
40 
36 

1.2 
36 
36 
20 

aThe sensitivity of detection by the threading method for various two- 
body interaction parameter sets, measured by the percentage of correctly 
predicted folds for 25 sequences, as a function of gap insertion and exten- 
sion penalty (the sequences were threaded through a database of 380 struc- 
tures). 

a whole spectrum of tests must be employed before the relative 
utility of a given scale can be assessed. Of course, the final most 
important test is whether or not a given potential can fold  a variety 
of proteins. 

Discussion 

In this paper, we have presented a number of derivations of the pair 
potential describing effective interresidue interactions that explic- 
itly account for chain connectivity. First, we considered a Gaussian 
chain reference state that incorporates the constraint of chain con- 
nectivity and nothing else. Next, we generalized the reference state 
to include the fact that the native state of proteins is compact and 
has regularities arising from the presence of secondary structural 
elements, but otherwise lacks specific side-chain interactions. Such 
a hypothetical native reference state has been constructed by cal- 
culating the contact probability between pairs of amino  acids by 

Table 7. Comparison of inverse folding results with gaps 
obtained with various two-body interaction parameter sets 

Best sensitivity of detection in 
percent of correctly identified 

Parameter set structures 

Native 
Native-filtered 
Gaussian 
Contact fraction-averaged 
GKS 

48 
40 
40 
36 
44 
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threading each sequence through a library of appropriately com- 
pact fragments of native proteins. The resulting scale has been 
shown to be the most sensitive of the scales as assessed by its 
performance in inverse folding both with and without gaps. How- 
ever, in spite of the fact that the native scale is derived while 
maintaining chain connectivity and the presence of secondary struc- 
ture, in fact it reduces to a scale based on  the quasichemical-mole 
fraction-based approximation. The identical conclusion holds for 
the Gaussian chain reference state. The origin of these results is the 
factorization of the expected contact probability into sequence- 
dependent and structural-dependent terms. Because the amino acid 
sequence distribution is random, the resulting scale then reduces to 
a quasichemical scale based on mole fraction units. Indeed, even 
when contact fraction-based scales  are used but sequence and struc- 
ture are uncoupled, again, because of the randomness of protein 
sequences, the mole fraction-based, quasichemical reference state 
is recovered. Thus, we conclude that all scales which ignore the 
repacking of a sequence when it is threaded into a given structure 
will reduce to a quasichemical-mole fraction-based reference state. 

Whether or not the quasichemical approximation is correct thus 
reduces to the question of the magnitude of the side-chain repack- 
ing term when a sequence experiencing just hard core interactions 
is threaded into a given structure. The importance of this contri- 
bution is, at present, unknown, and an estimation of this term is 
clearly necessary. Because the desired reference state is one having 
no preferential side-chain interactions, the most straightforward 
way to estimate this term is to assume a collection of hard-core 
side chains, rebuild the protein for the sequence of interest in each 
member of the structural library, and then calculate the modified 
side-chain contact map. The difference between the original con- 
tact map and the modified one would constitute the basis for  de- 
termining the repacking energy correction to the quasichemical 
approximation. Such a series of calculations is now in progress. 

Because there is renewed interest in interaction scales contain- 
ing a reduced number of parameters, we also considered a filtered 
version of the native scale. Although such a scale worked accept- 
ably well in gapless inverse folding, it performed somewhat worse 
when inverse folding with gaps (and the attendant exponential 
increase in alternative possible folds) was done. In other words, in 
the case of threading and perhaps for de novo folding as well, it  is 
the variation in interactions that enhances the specificity, an intu- 
itively reasonable result. When the scale is smoothed, it performs 
more poorly as the manifold of accessible conformations against 
which it must discriminate is increased. A fuller investigation of 
these effects is the topic of future work. 

In this paper, pair potentials have been derived assuming a square 
well interaction. However, the basic prescription for the derivation 
of the potential is completely general and can be applied to any 
assumed  form of the interaction. For example, if a distance- 
dependent potential is desired, because the reference state is a 
library of compact structures, the correct asymptotic behavior at 
large distances along with appropriate corrections for protein size 
follows immediately. 

Of course, the ultimate test of any potential and protein repre- 
sentation is the ability to recognize the native conformation as 
being lowest in energy. At least as  far  as threading is concerned, we 
can point to improvements over  our previously derived, quasi- 
chemical approximation-contact fraction-based potentials. More 
generally, it is unclear how well the new set of potentials will 
perform in folding proteins from the random coil state (Ha0 & 
Scheraga, 1994, 1995; Kolinski et al., 1995, 1996; Kolinski & 

Skolnick, 1996). Although the size of the existing structural data- 
base limits  us to consider mostly pair and a few triplet interactions, 
the approach can be generalized to any set of interacting groups. 
Whether or not the resulting potentials can, in fact, fold numerous 
proteins, the range of validity of the quasichemical approximation 
that has formed the basis of the derivation of statistical potentials 
now has been established. 

Materials  and  methods 

Database  preparation 

The set of interaction parameters has been derived from a training 
library comprised of 224 highly refined, nonhomologous proteins 
extrinsic to the testing set of examined proteins. For gapless in- 
verse folding, a testing set of 87 test proteins that contain at least 
51 residues were examined. Both sets of proteins had a resolution 
better than 2.5 8, a residual factor better than 20% and a homology 
threshold of 30%. The list of proteins used for parameter set de- 
velopment and testing is available via anonymous ftp from ftp. 
scripps.edu. 

For each protein of interest, we construct a side-chain contact 
map using the definition that any pair of side chains are in contact 
whenever any of their heavy atoms is less than 4.5 8, apart. For 
parameter derivation, we assume a fixed contact map; that is, the 
contact map is excised from the crystal structure and is not allowed 
to readjust when a new sequence is threaded through the structure. 
Thus, the static contact map approximation is used. This approx- 
imation is equivalent to treating all amino  acids as being of the 
same size. For gapless inverse folding, the identity of the partners 
may change, but the presence of the contact cannot. 

Correlation coeficients 

The correlation coefficient, r (Langley, 1970), is designed to test 
the hypothesis that two parameter sets [x] and b] are linearly 
related and is defined by 

If the two sets are perfectly correlated, r = 1; if the two sets are 
completely anticorrelated, r = - 1; and if the two sets are uncor- 
related, r = 0. 

Threading with gaps: Sensitivity of detection 

The sensitivity of detection, i.e., the ability of a given parameter 
set to identify sequentially unrelated but topologically identical 
proteins was calculated for 25 sequences from 21 structural fam- 
ilies. Each sequence was compared to topology fingerprints from 
a database containing 380 proteins. This database has been de- 
scribed elsewhere (Godzik et al., 1995). The sensitivity of detec- 
tion by the threading method is measured as the percentage of 
correctly predicted folds  for these 25 sequences. Correct prediction 
means that, for a given sequence, the best scoring protein is a 
member of the same structural family as the test sequence. 

Optimal values of gap penalties and the weight 
of local interaction energy term 

Because corresponding elements of similar proteins can differ in 
size, the analogous fragments of the sequences can shift. Thus, the 
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possibility of introduction of gaps in the aligned sequences is nec- 
essary (Godzik et al., 1992). By analogy to sequence analysis meth- 
ods, two gap penalties are applied. The  gap introduction penalty is 
the energetic cost of introducing a  gap.  The  gap extension penalty is 
the cost of elongating an already existing gap.  The best values of the 
gap penalties can be different for each form of the scoring function. 
Gap penalties should be optimized for each tested parameter set or 
new form of the scoring function. The calculation of the sensitivity 
of detection was determined for  gap introduction penalties: 2.0,4.0, 
8.0; and for  gap extension penalties: 0.3, 0.6, 1.2, which lie in the 
range of the optimal alignment of the sequence into the structure. 

In the present version of our inverse folding algorithm, a local 
interaction energy function that reflects the statistical preference of 
consecutive pairs of amino acids for  a given kind of secondary 
structure (Kolinski et al., 1995) was added. Elsewhere, we have 
shown that the inclusion of such a term improves the sensitivity of 
detection. The relative weight of this term influences the quality of 
the results. The weight of the local interaction energy term was 
optimized for each parameter set tested. The calculations were 
repeated for four values of this term (0.5, 1.0, 2.0, 4.0). The value 
giving optimal accuracy of the alignment was selected. 

Definition of Z scores 

One way  of assessing the significance of the energy, E of a given 
sequence in a given structure is to express it in terms of the Z-score, 
defined as 

where ( E )  is the average value of the energy and (T is the standard 
deviation of the average energy, 

u = ( ( E * )  - ( E ) 2 ) ” 2 .  (23b) 

In general, the lower the Z score is, the more specific the prefer- 
ence of a given sequence for a given structure. 
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