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ABSTRACT A new, efficient method for
the assembly of protein tertiary structure from
known, loosely encoded secondary structure
restraints and sparse information about exact
side chain contacts is proposed and evaluated.
The method is based on a new, very simple
method for the reduced modeling of protein
structure and dynamics, where the protein is
described as a lattice chain connecting side
chain centers of mass rather than Cas. The
model has implicit built-in multibody correla-
tions that simulate short- and long-range pack-
ing preferences, hydrogen bonding cooperativ-
ity and a mean force potential describing
hydrophobic interactions. Due to the simplic-
ity of the protein representation and definition
of the model force field, the Monte Carlo algo-
rithm is at least an order of magnitude faster
than previously published Monte Carlo algo-
rithms for structure assembly. In contrast to
existing algorithms, the new method requires
a smaller number of tertiary restraints for
successful fold assembly; on average, one for
every seven residues as compared to one for
every four residues. For example, for smaller
proteins such as the B domain of protein G, the
resulting structures have a coordinate root
mean square deviation (cRMSD), which is about
3 Å from the experimental structure; for myo-
globin, structures whose backbone cRMSD is
4.3 Å are produced, and for a 247-residue TIM
barrel, the cRMSD of the resulting folds is
about 6 Å. As would be expected, increasing the
number of tertiary restraints improves the
accuracy of the assembled structures. The reli-
ability and robustness of the new method
should enable its routine application in model
building protocols based on various (very
sparse) experimentally derived structural re-
straints. Proteins 32:475–494, 1998.
r 1998 Wiley-Liss, Inc.
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INTRODUCTION

The ability to predict the three-dimensional struc-
ture of a protein from its amino acid sequence is of
great theoretical1,2 and practical importance.3 In
practice, structure prediction could be attempted on
various levels, ranging from purely de novo ap-
proaches to those that incorporate restraints derived
from experimental data. The latter aspect of protein
structure modeling has recently attracted significant
attention4–6 due to its possible application to model
building based on structural restraints provided by
nuclear magnetic resonance (NMR)7 or other experi-
mental methods. This paper describes a new, rela-
tively rapid and straightforward algorithm for struc-
ture assembly that employs partial knowledge of
known protein secondary structure and a small
number of tertiary restraints. ‘‘Partial knowledge’’
means that the method does not require a detailed
description of the local secondary structure in terms
of its f, c angles or their lattice equivalent. Instead,
a three-letter code for secondary structure (H-helix,
E-extended, and (2) everything else) is used as an
input. This is translated in the program into loosely
defined preferred ranges of local intrachain dis-
tances. In many respects, the present approach is
very similar to our recently published MONSSTER
(MOdeling of New Structures from Secondary and
Tertiary Restraints) algorithm.6 MONSSTER pro-
vides a well-defined protocol for the identification of
moderate-resolution nativelike structures from
known secondary structure and a small number of
tertiary restraints.

What is the range of application of such models?
Certainly, when a large number of distance re-
straints obtained from NMR8 and possibly from
homology-based theoretical considerations is avail-
able, more standard algorithms9–12 are the tools of
choice. These algorithms are based on purely geo-
metrical considerations, followed by restrained mo-
lecular dynamics refinement of the model struc-
tures.13 However, in many real life situations, the
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number of available restraints is relatively small
and limited in the early stages of NMR-based struc-
ture determination. When the available restraints
are too sparse to define even a moderate resolution
structure, it is necessary to have a model that uses a
reasonable force field capable of providing an overall
protein-like bias. In such a case, even a small
number of distance restraints could be sufficient to
guide folding to the correct structure. Due to the
necessity of sampling a substantial part of the
protein conformational space, such an algorithm has
to be computationally effective. Moreover, the force
field of the model should be able to correct for some
errors in the provided set of restraints. The
MONSSTER method satisfied all these require-
ments. However, the computational cost of this
method limited its application to proteins containing
no more than 150 residues. Thus, our goal here is to
remove this limitation so that a larger class of
proteins can be treated using a relatively smaller
number of long-range restraints.

In the past several years, there also have been a
number of other studies that incorporate known,
correct secondary structure and a limited number of
known, correct tertiary restraints to predict the
global fold of a globular protein. In particular, Smith-
Brown et al.4 have modeled a protein as a chain of
glycine residues. Tertiary restraints are encoded via
a biharmonic potential, with folding forced to pro-
ceed sequentially via successive implementation of
these restraints. In practice, they find that a substan-
tial number of tertiary restraints are required to
assemble a protein structure. Another effort to pre-
dict the global fold of a protein from a limited
number of distance restraints is due to Aszodi et al.5

Their approach is based on distance geometry, where
a set of experimental tertiary distance restraints is
supplemented by a set of predicted interresidue
distances. These distances are obtained from pat-
terns of conserved hydrophobic amino acids that
have been extracted from multiple sequence align-
ments. In general, they find that to assemble struc-
tures below 5 Å cRMSD, on average, more than N/4
restraints are required, where N is the number of
residues. Even then, the Aszodi et al. method has
problems selecting out the correct fold from compet-
ing alternatives. However, an advantage of theAszodi
et al. approach is that it is very rapid, with a
calculation taking on the order of minutes on a
typical contemporary workstation.

In this paper, we describe a new lattice protein
model, the SIde CHain Only (SICHO) model, that
focuses explicitly on the side chain center of mass
positions and implicitly treats the protein backbone.
As in MONSSTER, the present force field consists of
short-range interactions that reflect secondary pro-
pensities and some short-range packing biases, a
geometrically implicit model of cooperative hydrogen
bonds, and explicit burial, pair and multibody ter-
tiary interactions. The increased robustness of the

present method is due to a more efficient protein
representation and a new definition of the model
force field, which when combined with a small num-
ber of long-range harmonic restraints (known side
chain contacts), result in rapid collapse and assem-
bly. Due to the way the model and force field are
formulated, in comparison to MONSSTER, the com-
putational cost scales with a lower power of the chain
length.

The outline of the remainder of this paper is as
follows. First, we describe the new method. Included
is a detailed discussion of the geometric properties of
the model, the force field and the conformational
sampling protocol. Next we describe results on the
folding of 8 representative proteins having a number
of common protein motifs. We then compare our
results with that of previous work.4–6 Finally, in the
Conclusions section, we summarize our results and
outline the direction of future research.

METHODS
Protein Representation

The protein is modeled as a lattice chain connect-
ing points restricted to an underlying simple cubic
lattice whose mesh size equals 1.45 Å. By way of
illustration, Figure 1 depicts short fragments of a
b-strand and an a-helix in this particular lattice
representation. This figure also shows the corre-
sponding Ca-traces, which are not explicitly mod-
eled. The distance between two consecutive side
chain units is variable and is assumed to be in the
range of 111/2–301/2 lattice units or equivalently
4.8–7.9 Å. The length distribution roughly covers
typical distances between two consecutive side chain
centers of mass seen in real proteins.14 The resulting
number of side chain side chain vectors, 5v6, is equal
to 592. Similar limitations are superimposed on the
distances between the i-th and i 1 2nd a-carbons, i-th
and i 1 3th a-carbons, etc. As a result, some implicit
limitations are superimposed onto the range of pla-
nar angles defined by the positions of three consecu-
tive side chains. Some possible three-vector local
conformations are shown in Figure 2A.

As shown in Figure 2B, the excluded volume
cluster defined for each side chain consists of the
central lattice point (coinciding with the hypotheti-
cal center of mass of the side chain) and the 16
surrounding points located at positions (61,0,0) and
(61, 61,0), including all permutations of these vec-
tors. With such a hard-core definition, the distance of
closest approach of two residues is equal to three
lattice units (4.35 Å). This nicely corresponds to the
equivalent hard core in real proteins. There are also
30 possible lattice positions at which the closest
approach, side chain-side chain contact, can occur.
These are defined by six vectors of the (3,0,0) type
and 24 vectors of the (2,2,1) type emanating from the
side chain of interest. For bigger residues, a wider,
finite magnitude, repulsive core is also included, and
the number of ‘‘contact positions’’ is even larger.
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Consequently, effects of lattice anisotropy are essen-
tially nonexistent.

Side chain overlaps and interactions are readily
detected by inspection of the occupancy status of the
appropriate collection of lattice points in the Monte
Carlo working box. As a result, for a given residue,
the computational cost for calculating the short- and
long-range interactions does not depend on chain
length.

Monte Carlo Model and Conformational
Updating

The Monte Carlo move set consists of single resi-
due ‘‘kink’’ moves, chain-end moves, two-residue
moves and small ‘‘rigid-body’’ displacements of a
larger portion of the model chain. Examples of these
moves are schematically illustrated in Figure 3A–D.
A single ‘‘time step’’ consists of N attempts at kink
moves, 2 attempts at chain-end moves, N-1 attempts
at two-bond moves and one attempt at a randomly
selected, large fragment displacement. Before any
energy computation, the test for excluded volume
violation is always performed, and trial conforma-

tions that would lead to steric collisions of chain
units are rejected. Also, conformations that would
result in nonphysical distances between two consecu-
tive side chain units are a priori rejected.

Interaction Scheme

The interaction scheme consists of short-range
interactions, hydrogen bond interactions, and long-
range interactions. All types of interactions have
generic (i.e., sequence-independent), sequence-depen-
dent, and target (i.e., resulting from superimposed
short- and long-range restraints) components. Be-
low, we first discuss the generic and sequence depen-
dent terms, and then describe those terms arising
from the restraint contributions.

Sequence dependent short-range interactions

The potentials were derived from the geometric
statistics of known protein structures. We consid-
ered pairwise-specific distances between nearest
neighbors, up to the fourth neighbor, along the
polypeptide chain. These distances depend on amino

Fig.1. Illustration of the protein chain representation. (A) For a
short expanded fragment and (B) for a helical fragment. The solid
circles correspond to explicitly simulated side chain centers of
mass. The open circles indicate the expected positions of the
a-carbons.

Fig. 2. Some examples of bonds connecting three successive
side-chain united atoms. (A) The open circles in the upper panel
correspond to a subset of possible positions of a third side chain
given that the positions of the two preceding units (solid circles)
are fixed and (B) illustration of excluded volume clusters. The solid
dots correspond to the three lattice points along the axis orthogo-
nal to the displayed slice. The open circles correspond to a single
point in the plane.
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Fig. 3. Examples of the conformational transitions employed in
the Monte Carlo algorithm: (A) Three examples of possible
two-bond moves (the number of possibilities is much larger), (B)
an example of a chain-end update, (C) an example of a three-bond
move, and (D) a rigid body-like displacement of a larger portion of
the model chain.
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acid composition and the local chain geometry. Six
bins, covering the majority of distances observed in
proteins, have been used for all components of the
short-range interactions. For a given pair of amino
acids in a relevant position, the distribution of
associated distances between side chain centers of
mass is extracted from the statistical analysis of the
structural database of nonhomologous proteins.
When compared to an average distribution (ignoring
the sequence information), this leads to a statistical
potential. The technique is similar to that employed
in other studies.15 A detailed description of the
derivation of strictly related potentials can be found
elsewhere.16 As schematically illustrated in Figure 4,
the resulting potential could be expressed as follows:

Eshort 5 S E12(ri,i11
2 , Ai, Ai11)

1 S E13(ri,i12
2 , Ai, Ai12)

1 S E14(r2*i,i13, Ai11, Ai12)

1 S E814(r2*i,i13, Ai, Ai13)

1 S E15(ri,i14
2 , Ai12, Ai13)

1 S E815(ri,i14
2 , Ai, Ai14). (1)

The summation is performed along the chain; E1d

refers to energy associated with interactions be-
tween the residue of interest and its d-1st neighbor
down the chain. Ai denotes the amino acid identity at
position i, and ri,i1k is the distance between residues i
and i 1 k. The terms for the three-bond fragments
include the effects of local chain chirality via a
‘‘chiral’’-distance-squared term

r2*i21,i12 5 ri21,i12
2 sign((vi21 ^ vi) · vi11). (2)

All terms are amino acid pair specific because the
presently available structural database does not
support meaningful statistics for higher order terms.
Thus, there is a single energy term for one-bond and
two-bond fragments, and two types of binary poten-
tials for three-bond and four-bond fragments. These
sequence dependent short-range interactions also
provide some information about short-range packing
regularities, e.g., the propensities for a particular
side chain arrangement on a helical surface. It is not
obvious what the optimal relative scaling of these
interactions should be. For simplicity, we take the
relative scaling of all terms equal to one. This scaling
generates a reasonable level and identity of second-

Fig. 4. Explanation of geometry used for the
definition of the six terms describing the se-
quence-specific short-range interactions.
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ary structure. Since there are a large number of
numerical values for these short-range potentials
(six components, each having 20 3 20 3 6 pairwise
values for 6-bin histograms), the data are available
via anonymous ftp17, or upon request from the
authors.

Generic short-range conformational biases

Next, terms that do not depend on amino acid
sequence have been introduced into the model force
field. Thus, the energy contribution from these terms
depends only on specific chain geometry (regardless
of protein sequence) and its magnitude is controlled
by a single adjustable energetical parameter egen.
Their purpose is to enforce a proteinlike distribution
of short-range conformations.

The first of these components accounts for the
characteristic stiffness of polypeptide chains, which
builds on the observation that there is a characteris-
tic orientation pattern in folded proteins. The local
orientation of protein chain could be conveniently
defined by a vector orthogonal to a triangle formed
by three consecutive centers of the side chains. The
corresponding conformational bias could be defined
as follows:

Estiff 5 20.25 egen S (wi · wi14) (3)

where wi is a vector orthogonal to the plane formed
by the two consecutive virtual chain bonds vi21 and
vi, egen is an arbitrarily chosen energetical param-
eter, equal to 1 kBT in all potentials described in this
section, here scaled by a factor equal to 20.25. The
length of the orthogonal vectors wi is about 4 lattice
units, and they are also used for detection of ‘‘hydro-
gen bonds.’’ The dot product in the above equation is
near its maximum value for expanded, b-like states
and for helices. The high value of this product is
significant in a majority of typical turns and loop-
type local conformations. Thus, the potential pro-
vides a bias towards these relatively rigid elements
of protein secondary structure.

The second generic term provides a bias towards
regular arrangements of secondary structure. In a
random lattice chain, the distribution of distances
between the i-th and i 1 4th bead would be unimodal
and close to a Gaussian distribution. On the other
hand, the corresponding distance distribution be-
tween residues in native proteins is bimodal. The
shorter distance peak corresponds to helical and
turn conformations, while the more diffuse, longer
distance peak corresponds to expanded conforma-
tions. A term that adjusts the model to this bimodal
distribution could be expressed as follows, with all
distances in lattice units:

Estruct 5 S Es(i) (4a)

with:

Es(i) 5 22egen,

for ri,i14
2 , 33 and (vi · vi13) . 0 (4b)

or

Es(i) 5 22egen,

for 48 , ri,i14
2 , 145 and (vi11 · vi12) , 0. (4c)

The first set of conditions describes a loosely
defined, helical conformation, while the second de-
scribes an expanded, b-type fragment. Thus Equa-
tion 4b states that the distance between the i-th and
i 1 4th side chain in a helix has to be small (here
below ca. 8 Å). The second condition states that the
chain has to make a tight turn. A corresponding set
of conditions is defined for b-type expanded states. In
both cases, the cut-off distances and the angular
restrictions are selected in a very permissive way
based on the observed distributions for native pro-
teins. The permissive definition of local conforma-
tional biases drives the model system towards a
loosely defined proteinlike chain geometry, yet it still
allows substantial local mobility. As mentioned be-
fore, in all simulations, the value of egen has been
assumed to be equal to 1 kBT.

’’Hydrogen bonds’’ and generic packing biases

The model hydrogen bonds provide similar struc-
ture-regularizing biases with respect to tertiary inter-
actions as the generic short-range interactions do for
secondary structural regularities. Residue i is consid-
ered to be hydrogen bonded to residue j when the
orthogonal vector wi (originating from the bead i)
touches any of the 17 points of the excluded volume
cluster of residue j. Two (and only two, due to the
above definition) hydrogen bonds can originate from
a given residue. The geometry of hydrogen bonds is
depicted in Figure 5. Only residues that are ‘‘in
contact’’ could be hydrogen bonded. That is, there is
the same long-range cut-off for side group pair
interactions and for hydrogen bonding. The energy of
the hydrogen bond network is defined as follows:

EH-bond 5 2eH-bond S (d1 1 d2 1 d1,2) (5)

where d1 , d2 , d1,2 are equal to 1 when the ‘‘right
handed,’’ the ‘‘left handed,’’ and both hydrogen bonds
originating from residue i are satisfied, respectively.
Otherwise, the corresponding terms are equal to
zero. The last term, d1,2, is a cooperative hydrogen
bond energy gained only upon local saturation. The
numerical value of this parameter was assumed to
be equal to 1.0–1.25 kBT. The lower value of this
parameter tends to accelerate folding, while the
higher value tends to build structures of slightly
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better quality. These effects are small. In all isother-
mal Monte Carlo runs used for energy comparisons,
the same value (1.0) has been employed.

Two other generic terms that enforce proteinlike
packing regularities also have been introduced. The
first one is a ‘‘contact map propagator’’ that reflects
the most common patterns seen in all side chain
contact maps of globular proteins.18 It is defined in
the following way:

Emap 5 2egen(SS(di, j · di11, j11 · di21, j21)dpar

1 SS(di, j · di21, j11 · di11, j21)dapar) (6)

where di,j is equal to 1 (0) when residues i and j are
(not) in contact. dpar is equal to 1 only when the
corresponding chain fragments are oriented in a
parallel fashion, i.e., (vi21 1 vi) · (vj21 1 vj) 0. Simi-
larly, dapar is equal to 1 when the chain fragments are
anti-parallel. In the above equation (and in Eq. 7),
egen 5 1 is exactly the same parameter as the one
used in the short-range generic terms.

A second packing regularizing term provides an
additional cohesive energy between secondary struc-
ture elements by favoring the parallel packing of
pairs of hydrophilic residues and the anti-parallel
packing of pairs of hydrophobic residues. Conse-
quently, since it exploits sequence information, this
term is not purely generic; however, it is reduced to a
two-letter (HP) code.

Epacking 5 2egen SS (dPP · dpp 1 dHH · dapp) (7)

where dPP (dHH) is equal to 1 when both residues in
contact are hydrophilic, P, (hydrophobic, H), accord-
ing to the Kyte-Doolittle hydrophobicity scale.19 The
value of dpp is equal to 1 only when the packing of the
side chain pair is parallel; i.e., (vi21 2 vi) ·
(vj21 2 vj) 0. Similarly, dapp is equal to 1 only when
the packing of the side chain pair is antiparallel; i.e.,
(vi21 2 vi) · (vj21 2 vj) 0.

Various structure regularizing terms described in
this and the previous section reflect the various
structural regularities seen in globular proteins.
Each one accounts for a different correlation that
could be easily detected by statistical analysis of the
geometry of the side-chain-only representation of
protein structures. Except for the last one (which
depends on some sequence features), they are se-
quence independent: the underlying regularities are
true for all types of structural motifs of globular
proteins. During the Monte Carlo simulations, these
generic potentials provide a very strong bias against
nonsensical, non proteinlike conformations. Such
conformations would otherwise be quite frequent
due to the reduced character of the protein represen-
tation. In the presence of these generic contributions
to the model force field, the requirements for se-
quence-specific potentials are lower; they have to
select between various proteinlike conformations,
which makes the selection easier (and computation-
ally less expensive) than in the much broader confor-
mational space of an unrestricted model chain.

Sequence-specific long-range interactions

These interactions are defined as follows:

Epair 5 SSEi j (8a)
where:

Ei j 5

`, for ri j , 3

Erep, for 3 # ri j , Ri, j
rep

ei j, for Ri, j
rep # ri j , Ri, j

0, for Ri, j , ri j

(8b)

where eij are the pairwise interaction parameters
described in our previous work,6,20 and the interac-
tions are counted for all pairs, except the first
nearest neighbors along the chain. There is a strong,
soft-core repulsive energy, Erep 5 4.0 kBT, in all
simulations. It provides a slightly larger excluded
volume for larger amino acids than that defined by
the hard core. The values of the cut-off distances
Ri,j

rep and Ri,j are given in Table I. The values of Ri,j

were adjusted to approximately mimic the contact
distances employed in the derivation of binary inter-
actions parameters.20 (Here, we employ the ‘‘native’’
interaction scale from Skolnick et al.20.)

Fig. 5. Illustration of model hydrogen bond geometry. The
hydrogen bonds are shown by open arrows.
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One-body burial interactions

To facilitate a rapid collapse of the model chain, we
employ a centrosymmetric, density regularizing term
based on a statistical analysis of single domain
proteins. This is the only term that uses the assump-
tion that the protein has a single domain. For some
increase in computational cost, these terms could be
omitted. The radius of gyration of the protein is
given by:

S 5 (N21S(rCM 2 ri)2)1/2 (9)

where rCM is the position of the center of mass of the
globule, and ri is the position of the center of mass of
the i-th side chain. The size of a single domain
protein is strongly correlated with the number of
residues N according to:

S 5 1.52 N0.38 in lattice units. (10)

The exponent 0.38, obtained from the statistical
analysis of single domain globular proteins,21 is very
close to the value of 1/3 expected for a long, collapsed
polymer chain.22 The corresponding potential has
the following form23:

Eb 5 eb S 0mo,i 2 mi 0 (11)

where mo,i is the target number of amino acids in a
given spherical shell centered at the protein’s center
of mass. There are three equal thickness shells
within a distance S, and they contain somewhat
more than half of the protein residues. The entire
protein is essentially contained in a sphere of radius
equal to 5/3 S. The value of the parameter eb was
equal to 0.25–1.0 kBT, depending on protein size.
Larger proteins tend to exhibit a larger absolute
deviation from the above target distribution of mass,
and consequently, a lower penalty for such devia-
tions should be employed.

To further enhance rapid collapse, those residues
that are within a radius of 2/3 S (a very conservative
estimate of the hydrophobic core of a single domain
globular protein) contribute eKD(i)/16 to the total
energy, where eKD(i) is the Kyte-Doolittle hydropho-
bicity parameter of the i-th residue.19,24 The scaling
factor 1/16 is arbitrary chosen. This potential (and

its scaling with respect to other interactions) has
very little effect on the folded structure, but it
improves folding kinetics.

Multibody surface exposure term

Amino acid side groups have a different size and
shape. Thus, when a given side chain is in contact
with another amino acid, the fraction of its surface
that is covered depends on the identity of the contact-
ing partner. Appropriate parameters reflecting this
observation (i.e., the surface coverage of particular
types of side chains and associated statistical-type
potential) could be derived from the statistics of
known protein structures. In the present algorithm,
each residue has 30 surface contact points. A subset
of these contact points becomes occupied upon con-
tact with other side chains or main chain Ca atoms.
The Ca atom positions are approximated from the
positions of three consecutive side chain beads and
have their own excluded volume and contribution to
surface coverage. Due to shadowing, some contact
points could be multiply occupied by different resi-
dues (usually 1 or 2, or sometimes 3, but very rarely
4). The fraction of occupied surface points defines the
fraction of buried area of a given side chain. The total
energy of a model protein is computed as:

Esurface 5 esS Eb(Ai, ai) (12)

where ai is the covered fraction of sites of amino acid
side chain Ai and Eb (Ai, ai) is the statistical potential
for amino acids Ai that are covered by ai contact
points, i.e., its coverage fraction is ai/30. The refer-
ence state for this statistical potential is ‘‘an aver-
age’’ amino acid with average (over structural data-
base) coverage. The scaling factor es for this term has
been assumed to be 0.25.

The above approach to the hydrophobic interac-
tions allows suppression of our previously employed
centrosymmetric one-body potentials6 and thereby
opens up the possibility of extending the present
approach to multidomain and multimeric proteins.
Here, we used both models of mean field hydrophobic
interactions in parallel.

The force field designed for this model is entirely of
a ‘‘knowledge-based’’ origin. Some terms, such as the
generic short- and long-range potentials, provide a
bias toward proteinlike short- and long-range corre-
lations in the model chain. These potentials general-
ize regularities seen in native structures of all
globular proteins. The sequence-specific terms were
derived as statistical potentials with a rather careful
selection of the reference state.20,25,26 When several
statistical potentials are combined in a relatively
complex reduced model, an a priori derivation of the
relative scaling factors is virtually impossible. Some
double counting of particular physical interactions
may occur. Thus, these scaling factors have to be
adjusted to reproduce a reasonable balance between

TABLE I. Compilation of Pairwise Cut-off Distances
inAngstroms

Ai Aj Ri,j
rep

Ri,j

(attractive)a
Ri,j

(repulsive)

Smallb Small 4.35 7.03 6.32
Small Large 4.57 7.03 6.32
Large Large 4.83 7.50 7.03
aAttractive pair of amino acids.
bSmall amino acids are: Gly, Ala, Ser, Cys, Val, Thr, Pro.
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the short- and long-range interactions. A proper
balance should lead to a low secondary structure
content in the denatured state and a well-packed
and ordered collapsed state. The collapse transition
should be as abrupt as possible, mimicking an all-or-
none folding transition. This has been achieved in
the present model with the given scaling of particu-
lar interactions. Folding experiments for several
proteins of various structural classes were per-
formed with no short- or long-range restraints. The
force field described above fails to produce a unique
folded state, except for very simple folding motifs.
For more complex motifs, the folded states always
had a secondary structure very close to the native,
with good packing of the hydrophobic core; however,
the arrangement of the secondary structure ele-
ments (connection of helices, order of b-strands in
sheets, etc.) almost always had topological errors. As
designed, the model with its force field is very
efficient at generating proteinlike compact conforma-
tions. The model is not sensitive to the particular
scaling of the various interactions within a broad
range around the set used in this work. For example,
removal of all generic terms also led to collapsed
structures (although at lower temperatures) with
good overall fidelity of the secondary structure, but
the geometrical accuracy of the secondary structure
and packing pattern was more irregular. A detailed
discussion of the interplay between the generic and
sequence-specific short-range potentials will be pub-
lished elsewhere.27 It could be expected that when
the proposed force field is supplemented by some
structural restraints, a proper fold should be easily
selected.

Since a similar Ca-based model was successful in
reproducing quite complex aspects of protein dynam-
ics and thermodynamics,6,15,16,23,28–36 we believe that
the present realization of the force field approxi-
mately reproduces the main features of globular
proteins. However, here, due to a different geometri-
cal context, most of the short-range interactions had
to be rederived. The present model is somewhat
simpler (simpler representation and simpler defini-
tion of the force field) and computationally more
efficient than our Ca-based model. Thus, larger
proteins could be simulated.

Physical Basis of the Model Interaction
Scheme

The proposed interaction scheme may appear
rather complex and requires some explanation. The
main difficulty is related to the fact that we are
attempting to model quite realistic protein struc-
tures (as seen on the level of an entire fold) with an
extremely simple representation of the protein con-
formational space. Only the side chains are explicitly
modeled. The assumption of a single interaction unit
per residue is computationally very efficient. Why
were side chains used rather than (for example)

alpha carbons? The choice is dictated by the fact that
specific interactions in proteins involve side chains,
while the main chain interactions are much less
dependent on amino acid sequence. Due to this very
simple representation and requested specificity of
the model, several features have to be built into the
model force field. First, the assumed protein represen-
tation, with a single center of interaction per protein
side chain, allows too much conformational freedom.
This is because there is no explicit backbone connec-
tivity in the model chains. However, in real proteins,
the backbone connectivity and conformational stiff-
ness control, to some extent, the distances between
the centers of mass of the side groups near each
other along the polypeptide chain. The backbone
effect is moderated by the side chains’ internal
degrees of freedom. It is reasonable to assume that
for a short polypeptide fragment, the local geometry
of the side chain centers of mass is mostly dictated by
short-range interactions with a somewhat lesser
effect from long-range (tertiary) interactions. The
correct, proteinlike distance geometry of the side
chain centers of mass would imply a correct, protein-
like geometry of the main chain. This provides a
conceptual background for the sequence-specific
short-range potential of mean force (discussed previ-
ously and defined in Eq. 1). This potential drives the
system towards a local geometry (characterized by
distances between side chains) that is characteristic
of locally similar sequences.

At first glance, it may appear that such defined
sequence-specific secondary propensities are suffi-
cient for modeling proteinlike local geometry. This is
not the case for a couple of reasons. First, the
discussed statistical potentials are not very accurate
due to the limited size of the database of known
protein structures. However, more importantly, the
assumed simplified representation of the polypep-
tide chains exhibits excessive flexibility. With re-
spect to the assumed model of excluded volume, a
substantial fraction of the model chain conforma-
tions that are otherwise allowed are conformations
that cannot possibly occur in any protein or even in
other polymers. It is not a good strategy to make the
sequence-specific interaction so strong that such
nonphysical geometries would be practically prohib-
ited. This would lead to dynamic frustration of the
model system due to very frequent trapping in the
local conformational energy minima; thus, providing
a generic bias towards proteinlike geometry is com-
putationally more efficient. Then, much less is re-
quired from the sequence-specific part of the poten-
tial (selection within the proteinlike part of
conformational space instead of selection within the
much larger conformational space of a freely joined
polymer chain). Moreover, a properly defined generic
potential can ‘‘interpolate’’ proteinlike conformations
for those fragments of a given polypeptide chain
where the information content of the sequence-
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specific potential is low (due to lack of examples in
the database or balanced contradictory examples).
As discussed above (see Eqs. 3 and 4), sequence-
independent potentials exactly play such a role. The
first such term provides a bias towards the protein-
like stiffness of the model chain by an energetic
preference for either expanded zigzag or helical
conformations. The second term provides a bias
towards a bimodal distribution of the distances
between the i-th and i 1 4th side chain units. Our
definition of these potentials mimics some of the
most general structural regularities seen in all folded
proteins. They also provide a bias against nonphysi-
cal local conformations in the unfolded state.

Similar to the short-range interactions, there are
sequence-specific and generic terms of the model
tertiary interaction scheme. The pairwise contact
potentials and the model of hydrophobic burial poten-
tials of mean force derived from the statistics of the
structural database do not require additional discus-
sion. The procedures of derivation and implementa-
tion of such potentials are rather standard and
commonly used in all reduced models of pro-
teins.15–17,21,25,26 Such statistical potentials encode
some interaction preferences in real proteins. In the
majority of cases, they are accurate enough to select
a proper fold for a given sequence from a collection of
other folds of natural proteins. However, in our case,
the requirements are more stringent. The proper
fold must be selected from a much larger number of
conformations, most of them never observed in real
proteins (but possible in the model due to the re-
duced representation). Thus, it is important to con-
struct a generic potential that provides a bias toward
proteinlike tertiary interaction patterns. Such pat-
terns could be postulated as a generalization of
structural regularities seen in known protein struc-
tures. An important feature of all protein structures
is their very regular network of main chain hydrogen
bonds. Our model lacks an explicit protein backbone.
Nevertheless, an analysis of protein structures shows
that the presence of hydrogen bonds between resi-
dues translates with high reproducibility into a
pattern of contacting side chains. Indeed, the string
of hydrogen bonds along a helix implies the existence
of continuous (or almost continuous) strings of side
group contacts along the helix surface. Similarly, a
string of hydrogen bonds in a b-hairpin implies two
strings of side group contacts, one on each side of the
hairpin. Thus, a bias towards such a string (see Eq. 5
and discussion of the potential) could be used as an
ersatz copy of the hydrogen bond interactions. Fur-
thermore, such strings of contacts lead to a character-
istic pattern of side chain contacts. The generic
potential given in Eq. 6 provides a bias towards the
most general feature of such patterns.16,18

Angular packing preferences for various types
(hydrophobic or hydrophilic) of residues also could be

used as a bias toward proteinlike side chain packing
patterns (see Eq. 7 and the description of this term).

Such a defined model of the force field could be
tested and the relative weights of the sequence-
specific versus generic terms could be adjusted by a
trial and error method. In our studies, we performed
a long series of isothermal simulations of various
proteins. While the nativelike structures were some-
times obtained only for very simple, small proteins,
the accuracy (cRMSD from native) of the emerging
elements of secondary and supersecondary structure
elements (helices, helical hairpins, b-hairpins or
a–b–a motifs) could be used as a convenient crite-
rion.

The presented force field is not accurate enough
for reproducible folding simulations of the majority
of (even small) proteins.At the same time, it discrimi-
nates against a vast majority of nonsensical confor-
mations and the nativelike structures always belong
to a relatively small number of low energy conforma-
tions. Thus, when some long-range restraints of
experimental origin are superimposed on top of the
discussed force field, the nativelike conformation
could be easily obtained in Monte Carlo simulations,
as shown in the remainder of this paper.

Implementation of the Restraints
Encoding short-range conformational
propensities

In the test of structure assembly described in this
work, we assume knowledge of secondary structure37

in the form of a three-letter code: E-extended, H-
helix and (-) everything else. Such a three-letter code
is then translated onto a set of biases towards a
corresponding range of local intrachain distances
and angular correlations. Only E and H states have
some conformational biases, and their definitions
are geometrically very permissive. The set of second-
ary structural restraints are as follows:

1. An H-state cannot be hydrogen bonded to an
E-state. (When detected, such bonds are ignored and
do not contribute to the conformational energy.)

2. A residue in a continuous stretch of H-states can
hydrogen bond only to residues i 2 3 and i 1 3.
(When hydrogen bonds are associated with Ca’s or
side chains, this is the canonical helix pattern.)

3. The system gains an additional energy equal to
2egen (over the previously defined generic contribu-
tions, and egen is of the same exact value as that used
in the definition of various generic terms of the
model force field) in all the following cases (a-c): As
shown in Figure 6, for helical type states when:

for ri,i14
2 , 33 (13a)

a) residues i 1 1 and i 1 2 are assigned as helical
if (vi · vi12) , 0

b) residues i 1 2 and i 1 3 are assigned as helical
if (vi11 · vi13) , 0
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c) residues i 1 1, i 1 2 and i 1 3 are assigned as
helical if (vi · vi13) . 0.

As shown in Figure 7, for expanded states when

for 48 , ri,i14
2 , 145 (13b)

a) residues i 1 1 and i 1 2 assigned as extended if
(vi · vi12) . 8

b) residues i 1 2 and i 1 3 assigned as extended if
(vi11 · vi13) . 8

c) residues i 1 1, i 1 2 and i 1 3 assigned as
extended if (vi · vi13) , 0.

The set of conditions given in Equations 13a and
13b describe various geometrical boundaries for the
local conformation of the model chain that are char-
acteristic for helical and expanded states, respec-
tively. In each case, they were split into three sets of
conditions to make the energy landscape as smooth
as possible (otherwise, a single condition could be
applied). In the present realization, the model sys-
tem gains some energetical stabilization when even
a nucleus of a helix or expanded state forms. On the
other hand, the conditions are rather permissive,
allowing substantial fluctuations of the secondary
structure without an energetical penalty. This is the
reason for certain cut-offs for intrachain distances
and dot products of the relevant side-chain vectors.
Of course, these cut-offs are consistent with the vast
majority of helical or b-type geometries seen in
globular proteins.

Long-range restraints

Long-range restraints are implemented in the
form of a distorted harmonic potential. Additionally,
the contact energy for such side chain pairs is
modified as well below:

Eij,restrained

5 `, for rij , 3

Erep, for 3 # rij , Ri, j
rep

eij 2 0.5 for Ri, j
rep # rij , Ri, j

eres(Ri, j
2 2 Ri, j

2 rep) for Ri, j , rij , 10

eres(100 2 (rij
2 2 100)/3 for 10 , rij. (14)

The value of parameter eres in structure assembly
runs was set equal to 1/8; while during the low
temperature refinement run, it was set equal to 1/4.
The meaning of other parameters is the same as in
Equation 8. In the first three ranges, the above
function is consistent with the definition of pairwise
interactions defined in the previous section. For
restrained residues, the pairwise potential has been
enhanced (line 3 of Eq. 14). The two remaining lines
define a pseudoharmonic long-distance potential.
For longer distances (line 5), it is slightly sup-
pressed. This is done for purely technical reasons
because the weaker function facilitates the some-
what faster assembly of model protein chains.

Folding Procedure

The sampling procedure employed for protein as-
sembly is based on Monte Carlo simulated thermal
annealing. The stages are outlined below:

1. In the first step, a random expanded chain
conformation is subjected to Monte Carlo simulated
thermal annealing38 over a broad range of tempera-
ture from T 5 6 (T 5 4 for smaller proteins) to T 5 1.
After annealing, the number of satisfied long-range
restraints in each folded protein is inspected. Those
folds with more than 1/7 of their restraints signifi-
cantly violated are rejected without further inspec-
tion (i.e., when the corresponding side chain-side
chain distance is larger than 7 lattice units for
proteins smaller than 100 residues and 8 lattice
units for proteins larger than 100 residues) This
particular choice has been motivated by our previous
studies of a similar problem6 and by preliminary
tests of the present model. Allowing a larger number
of violated restraints may lead to topologically wrong
folds, while requesting all restraints to be satisfied
would decrease the efficiency of the method (some
good folds with small local distortions would be
rejected). The success ratio at this stage depends on
the protein and the number of long-range restraints.
For example, in 1gb1, protein G, with eight re-
straints, more than 75% of short assembly runs

Fig. 6. Geometry employed in the definition of the helical bias
(see text).

Fig. 7. Geometry employed in the definition of the extended,
b-state bias (see text).
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(5–15 minutes of CPU time on a HP C-110 worksta-
tion) are successful. In the case of 1pcy, plastocyanin,
with 15 restraints, the corresponding success rate is
about 30% for 4-hour-long simulations on an HP
C-110 workstation. Of course, a slower annealing
protocol increases the fraction of assembled struc-
tures that satisfy the restraints. However, it appears
that use of a larger number of shorter simulations is
a more effective sampling protocol because a greater
number of structures are collected for each protein.

2. All structures obtained via the rapid annealing
procedure are subject to a refinement process. Each
structure is duplicated and subjected to two indepen-
dent Monte Carlo annealing runs over the tempera-
ture range T 5 221. The lowest conformational en-
ergy structure (from the last snapshot of the
corresponding trajectories) is accepted for further
analysis.

3. For each protein, both the lowest energy confor-
mation and the lowest energy alternative conforma-
tion are subject to isothermal runs. The purpose is to
establish whether the proper fold could be automati-
cally selected based on the choice of the lowest
average energy structure.

4. The Ca coordinates of the final, lowest energy
structures are rebuilt. The reconstruction procedure
is based on Monte Carlo annealing of a phantom
lattice model chain that has two united atoms per
residue: one centered on the Ca and the other at the
side chain center of mass. This Ca plus side chain
center of mass, CAPLUS, model (described else-
where6,16,29–31,39) only employs statistical potentials
describing short-range interactions and side chain
rotamer preferences. The positions of the side chains
in the CAPLUS model are driven by a harmonic
potential to the predicted side chain positions from
the side chain only model.

RESULTS AND DISCUSSION

The test set employed in this work is representa-
tive of single domain water-soluble proteins40 and
consists of the following proteins that were previ-
ously studied6 in the CAPLUS model: the small
(structured) protein fragment of 6pti, chosen for
comparison with the work of Smith-Brown et al.,4

the all-a protein myoglobin (1mba), the a/b motifs of
protein G, thioredoxin, flavodoxin, and an all-b
protein, 1 pcy. In addition, we also examined the
folding of a 247-residue TIM barrel, Atim, and the
b-protein 4fab. The set of restraints used in this
work is exactly the same as in our previous studies6

in those cases where the studied system is the same.
When a smaller number of restraints are used, these
are randomly chosen from the larger restraint set.
For the two proteins not studied previously, we
report the set of employed long-range restraints in
Tables II and III. The short-range restraints, as
before, come from the three-letter code of the DSSP

assignment37 of the native secondary structure, and
are as described in the Methods section.

Results of Monte Carlo Simulated Annealing

The results of stage 2 are compiled in Table IV. The
numbers of restraints are given next to protein PDB
codes.14 An estimate of the cRMSD from the PDB
structure and conformational energy (in dimension-
less kBT units) is given for the last snapshot of each
trajectory. The cRMSD is measured between the Ca’s
of the real structure and the roughly estimated
position of the Ca’s of the model chain. The latter are
obtained according to the following definition:
rai

C 5 (4ri 1 ri21 1 ri11)/6, where the sum in the
brackets is over the corresponding side chain coordi-
nates of the model chain. The exact agreement of the
secondary structure of the predicted fold and the
experimental structure was not examined in detail;
however, in all runs, it was very close to the target
with a small tendency for extension (by one or two
residues) of helical fragments in some cases (e.g., the
short helix of plastocyanin). The cRMSD and the
energy (in dimensionless kBT units) correspond to
the last snapshots of the second simulated thermal
annealing runs.

Generally, the predicted structures cluster into
two well defined groups, one of which dominates on
the basis of energy, and which is taken to approxi-
mate native structure. The remaining, misfolded

TABLE II. Tertiary Restraint Lists for 4fab

27 restraints 16 restraints

1 PRO ASN-100 xx
4 GLN MET-95
8 THR PRO-107 xx
8 ILE PRO-21 xx
11 ILE LEU-21
11 THR LEU-107
15 ILE LEU-111 xx
19 LEU ALA-109 xx
20 LYS SER-79 xx
23 TRP SER-40
23 PHE SER-76
29 HIS LEU-98 xx
34 LYS GLY-55
37 LYS TYR-55
39 TYR ARG-54 xx
39 SER ARG-94 xx
40 LEU TRP-52 xx
44 GLY LYS-89 xx
40 LEU TRP-78 xx
42 ASP LEU-87
43 VAL GLN-90
53 LEU ILE-78 xx
56 PHE VAL-67 xx
67 ASP PHE-87
80 LEU ILE-109
92 GLY PHE-106 xx
95 TRP GLN-101 xx
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structures (when observed more than once) were also
similar to each other. They represent the topological
mirror structure where the chirality of the connec-
tions between secondary structural elements (heli-
ces and b-strands) is reversed, but the chirality of
the secondary structure elements is the same as in
the native state, e.g., helices remain right handed.
Several interesting observations emerge from the
results presented in Table IV. First, in the majority
of the runs, the native fold is recovered. The accuracy
depends on protein size and number of restraints,
but only slightly on protein type. Generally, the
accuracy increases with decreasing protein size. The
best accuracy is observed for the 56-residue, B1
domain of protein G,41 where in most simulations the
obtained structures had cRMSD from native below 3
Å. Interestingly, for the smaller 6pti fragment with a
larger number of restraints, the accuracy was system-
atically somewhat worse. This reflects the effect of
protein ‘‘regularity’’. The fold of protein G has a high
content of regular secondary structure, while in the
6pti fragment, a substantial fraction of the chain is
classified as a loop or coil. The analysis of other cases
shows a tendency towards higher accuracy for more
regular folds. The accuracy of helical and a/b pro-

teins is greater than for all b-proteins. This is clearly
demonstrated on comparison of 1pcy with 2trx.
While both proteins are of comparable size, for 2trx
with 16 restraints, structures with a cRMSD below
3.5 Å are produced, but for 1pcy with 15 restraints,
structures above 5.2 Å result.

In the above cases, based on the conformational
energy of just one (the last in a trajectory) snapshot,
it was possible in all cases to identify the proper fold.
However, it should be also noted that this very
simple criterion may not always work. Indeed, in the
case of the fourth set (S4) of long-range restraints for
6pti, the difference between the energy of a mis-
folded state and the lowest energy of properly folded
states (simulation #3) is marginal. Moreover, the
three remaining properly folded conformations have
a higher energy than the misfolded one does. Fortu-
nately, for bigger proteins, the situation is much
better. The energy gap between the proper fold and
misfolded states is usually quite large, except for the
cases of all b-proteins with the smallest number of
long-range restraints.

The reasons for the apparently lower reliability of
the b-protein prediction are complex. At the present
stage of development, our model and its force field

TABLE III. Tertiary Restraint Lists forAtim

Set of 62
restraints

Set of 50
restraints

Set of 37
restraints

Set of 62
restraints

Set of 50
restraints

Set of 37
restraints

2–228 xx xx 91–125 xx 87–120
4–37 xx 91–231 xx 90–122
4–206 xx xx 93–125 xx
6–123 xx xx 94–166 xx
6–89 95–168 xx
6–162 98–126 xx xx
7–248 xx xx 98–145 xx xx

10–94 xx 105–145 xx
11–64 xx xx 105–148 xx
11–237 xx xx 109–152 xx
15–46 xx xx 112–149 xx xx
20–49 112–161 xx xx
23–237 24–54 116–153 xx 121–160
27–59 127–145 xx
27–241 32–59 127–165 xx
30–245 xx xx 128–142
36–58 xx xx 128–165 xx xx
26–248 xx 41–91 130–175 xx xx
37–89 xx 133–181 xx
39–123 xx 44–82 142–165 xx
47–63 142–189 xx xx
47–87 143–192 xx
51–86 xx xx 150–197 xx
59–245 xx xx 155–200 xx xx
60–89 162–208 xx xx
63–90 xx 165–189 xx xx
66–79 67–111 165–209 xx xx
68–114 xx 183–225 xx xx
79–114 xx 193–205 xx xx
89–162 82–120 215–244 xx xx
90–122 xx xx 230–248 xx
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TABLE IV. Coordinate cRMSD and Conformational
Energy of the Final Structure at the End of the

Simulated ThermalAnnealing Procedure

Name Run no. cRMSD (Å) Energy

6pti (18)a 1 3.3b 2321.9
41 res 2 3.8 2313.2
(18–56 fragment) 3 4.1 2302.8
6pti (9/S1) 1 4.1 2336.4

2 4.2 2345.4
3 3.6 2318.9
4 3.8 2385.9

6pti(9/S2) 1 3.8 2331.8
2 4.3 2320.2
3 4.0 2341.6
4 4.4 2353.6

6pti(9/S3) 1 3.4 2303.1
2 4.0 2318.7
3 4.8 2324.5
4 MIc 2323.2
5 MI 2322.5

6pti(9/S4) 1 MI 2319.1
2 3.8 2312.8
3 4.0 2320.8
4 4.2 2280.4
5 4.1 2302.0

6pti(9/S5) 1 3.9 2370.0
2 MI 2324.7
3 MI 2283.3
4 4.4 2355.2
5 4.2 2338.2

1gb1(8) 1 2.4 2539.6
56 res 2 2.6 2527.7

3 2.6 2530.2
4 2.7 2562.3
5 2.7 2548.0
6 2.7 2542.0
7 3.0 2550.5
8 3.2 2586.7
9 3.5 2563.7

10 4.0 2551.0
11 MI 2535.3

1ctf(10) 1 3.4 2710.5
68 res 2 3.6 2758.3

3 3.7 2720.9
4 3.7 2746.6
5 4.1 2622.5
6 MI 2655.1
7 4.6 2700.0
8 3.8 2692.0
9 3.2 2727.2

10 3.3 2749.4
1pcy(46) 1 3.1 2841.8
99 res 2 3.6 2824.5

3 3.5 2787.2
4 3.8 2783.3
5 3.9 2834.7
6 3.5 2848.0
7 MI 2744.2

1pcy(25) 1 4.7 2944.3
2 4.8 2786.7
3 4.5 2898.0
4 5.2 2928.4

1pcy(15) 1 MI 2870.7
2 5.6 2860.8
3 5.2 2874.7
4 5.3 2925.1

2trx(16) 1 3.8 21098

TABLE IV. (Continued)

Name Run no. cRMSD (Å) Energy

108 res 2 3.5 21089
3 4.5 21022

2trx(30) 1 2.8 21036
2 3.2 21037
3 3.7 21041
4 MI 2844

4fab(27) 1 4.5 2959
111 res 2 4.4 21006

3 4.9 21037
4 4.1 21031
5 MI 2984

4fab(16) 1 5.0 21042
2 5.1 21062
3 4.8 21041
4 5.5 2953
5 4.9 21035
6 5.8 21090
7 MI 21005
8 MI 21033
9 MI 21062

3fxn(35) 1 3.6 21441
138 res 2 3.8 21447

3 3.6 21432
4 3.5 21485
5 4.5 21409
6 3.5 21493
7 4.4 21464
8 4.1 21533
9 MI 21289

3fxn(20) 1 3.7 21447
2 3.9 21464
3 3.3 21511
4 4.2 21515
5 4.2 21503
6 4.5 21499

1mba(20) 1 3.5 21705
146 res 2 3.7 21733

3 4.1 21705
4 5.6 21605
5 4.2 21849
6 5.0 21570
7 4.1 21741

Atim(62) 1 5.0 22412
247 res 2 5.6 22357

3 5.7 22417
4 5.8 22491
5 5.4 22499

Atim(50) 1 5.9 22428
2 6.5 22507
3 5.9 22540
4 6.2 22509

Atim(36) 1 6.6 22469
2 6.4 22599
3 6.3 22558
4 MI 22593
5 6.5 22526
6 6.5 22643

aIn parentheses, the number of long-range restraints, S1, S2,
. . . S5, various sets of restraints for 18–56 residue 6pti frag-
ment.
bCoordinate root mean square deviation between crystallo-
graphic coordinates of Ca’s and the approximate positions of
the model Ca’s calculated as: ri

Ca 5 (4ri 1 ri21 1 r i11)/6.
cMI, misfolded structure that has satisfied the long-range
restraints, generally the topological mirror image fold.
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are not capable of folding complex b-type natural
proteins without the assistance of some long-range
restraints. These proteins have a larger number of
building blocks (compare the number of b-strands in
an all-b protein with the number of helices in a
helical structure of similar size) and, consequently,
more complex folds. Thus, the same number of
long-range restraints provides relatively less struc-
tural information for b-proteins. As a result, the
demands on the force field with a given (small)
number of restraints are greater. While in all cases
examined here, the proper fold could be identified by
choosing the lowest energy final conformation, for a
number of cases, this was just by good luck. In
reality, in these doubtful cases, the magnitude of the
energy fluctuations was larger than the observed
energy difference for the final states. Certainly, a
more dependable protocol for the selection of the
proper fold is necessary, and one such protocol is
described in the next section.

Structure Refinement and Selection
of Native Folds

As described in the Methods section, the lowest-
energy final structures from simulated annealing,
representing the putative proper fold and the closest
competing alternative topology, were subjected to
isothermal Monte Carlo runs using the same force
field and sets of restraints. The results of these stage
3 runs are summarized in Table V. All simulations
were done at T 5 1. The average cRMSD from native
and the average energy are computed from 200
snapshots of the Monte Carlo trajectory. In all cases,
the proper fold can be identified based on the average
conformational energy. Thus, a combination of fast-
simulated annealing and long isothermal runs al-
lows the dependable selection of the proper fold.
Indeed, during rapid assembly via Monte Carlo-
simulated annealing, a fine-tuning of structural
details is not always achieved. In long isothermal
runs, the misfolded (topological mirror image confor-
mations) states could always be detected as those of
higher average conformational energy. For the case
of 6pti, where five different sets of restraints were
examined, the lowest-energy misfolded structure
has a higher conformational energy than the highest-
energy proper fold, regardless of the set of restraints.
On average, the accuracy of the predicted native fold
improved slightly during the isothermal runs and
ranges between 3 and 5 Å cRMSD (for the estimated
positions of Ca’s), except for the Atim barrel where it
is about 6 Å. By way of illustration, in Figures 8 and
9 we present a representative conformation (gener-
ated using the MOLMOL42 procedure) of 3fxn and
4fab obtained from the isothermal refinement runs
(employs 20 and 16 restraints, respectively) with a
cRMSD of 4.4 Å and 5.5 Å, respectively.

Increasing the number of long-range restraints, on
average, leads to some increase in the compactness

of the obtained structures, as assessed by their
average root-mean-square radius of gyration. There
is no obvious systematic difference between the
dimensions of the native and misfolded states. Since
in both cases the majority of restraints are always
satisfied, the difference in conformational energy
arises from the underlying force field that has a
reasonable level of specificity for nativelike struc-
tures. Unfortunately, the non-restraint contribu-
tions to the potential are not sufficiently specific to
fold the protein (except for a few small proteins)
without the assistance of the restraints. On the other
hand, within the limit of N/7 restraints, if the
restraints are used alone without the remainder of
the potential, the resulting structures are essen-
tially random. Thus, it is the synergism of the
restraints with the underlying contributions to the
potential that permits the folding of these proteins.
For some of the test proteins, good folds could be
obtained with a smaller than N/7 restraints (e.g., 4
restraints for protein G). The value of N/7 is a
conservative estimate of a safe lower bond for all
proteins. This number is smaller than required by
related methods.4–6

Next, the side-chain-based lattice models serve as
a target for building a model with two united atoms
per residue, i.e., in the CAPLUS model. Table VI
displays the cRMSD data for such reconstructed
main chains. Somewhat surprisingly, there is no
significant difference between the average quality of
the rebuilt Ca chains and that roughly estimated
from a simple linear combination of three successive
side chain centers of mass. This shows that the side
chain model is consistent with the CAPLUS model
used previously. The Ca reconstruction process em-
ployed here neglects all the long-range interactions
(except of course the target harmonic restraints).
This is done for the sake of computational efficiency.
Since this is a rather marginal point for the present
studies, where a rapid algorithm for topology assem-
bly is discussed, we refrain from further discussion
of various possible methods of refinement of the
structures produced by this protocol.

Comparison With Other Work

As mentioned in the Introduction, there have been
several other attempts to use known secondary
structure and some tertiary restraints in the predic-
tion of protein three-dimensional structures. How-
ever, the closest studies of other workers who used
both known secondary structure and exact tertiary
restraints are those of Smith-Brown and coworkers4

and Aszodi and Taylor5. Smith-Brown et al. have
examined a number of proteins. By way of example,
flavodoxin, a 138-residue a/b protein, was folded to a
structure whose backbone cRMSD from native was
3.18 Å for 147 restraints. In contrast, with just 20
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restraints, here structures whose cRMSD from na-
tive is 4.2 Å are generated. Similarly for 3fab, they
required 90 restraints to produce a model whose
cRMSD is 4.6 Å. For 4fab in the present approach,
use of just 27 restraints yields a model whose
cRMSD is 4.4 Å. Their requirement for a large
number of restraints is perhaps due to the lack of
knowledge-based, proteinlike background potential.

Another effort to predict the global fold of a protein
from a limited number of distance restraints is due
to Aszodi et al.5 In general, they find that to assemble
structures below 5 Å cRMSD, on average, typically
more than N/4 restraints are required, where N is

the number of residues. Even then, the Aszodi et al.
method has problems selecting out the correct fold
from competing alternatives. While their best folds
are of acceptable accuracy, the competing misfolded
structures could be disregarded based on energetic
considerations. In contrast, in the simulations pre-
sented here, the nativelike fold could be easily
detected as the lowest energy structure, and just N/7
restraints are required to produce structures of
comparable accuracy. However, the Aszodi et al.
approach is very rapid, with a typical calculation
taking on the order of minutes on a typical contempo-
rary workstation.

TABLE V. Compilation of the Results of the Isothermal Simulations

Name Fold Average cRMSD cRMSD (A) Ca-fit Average energy 7S81/2 (Å)

6pti(9/S1) NATa 3.69 (0.21) 4.28 (0.29)c 2323.4 10.6
41 res MIb Not observed
18–56
6pti(9/S2) NAT 3.67 (0.22) 3.60 (0.11) 2326.1 10.6

MI Not observed
6pti(9/S3) NAT 4.41 (0.12) 4.23 (0.07) 2325.0 9.9

MI 8.01 (0.21) 2301.0 10.6
6pti(9/S4) NAT 4.01 (0.29) 4.05 (0.22) 2327.6 10.6

MI 8.11 (0.34) 2309.8 9.6
6pti(9/S5) NAT 4.06 (0.24) 4.27 (0.14) 2349.7 10.8

MI 8.34 (0.23) 2318.4 10.2
1gb1(8) NAT 3.11 (0.13) 3.39 (0.14) 2582.9 10.9
56 res MI 8.61 (0.13) 2567.2 11.5
1ctf(10) NAT 3.48 (0.25) 3.21 (0.08) 2699.9 11.2
68 res MI 8.68 (0.16) 2656.9 11.7
1pcy(46) NAT 3.44 (0.11) 3.80 (0.08) 2856.5 12.7
99 res MI 11.34 (0.08) 2796.9 12.7
1pcy(25) NAT 4.87 (0.12) 4.88 (0.04) 2952.5 13.1

MI Not observed
1pcy(15) NAT 5.27 (0.06) 5.70 (0.16) 2891.7 13.0

MI 7.70 (0.08) 2841.8 12.9
2trx(30) NAT 3.63 (0.15) 3.11 (0.14) 21013 13.0
108 res MI Not observed
2trx(16) NAT 3.43 (0.12) 3.52 (0.06) 21082 13.3

MI 11.88 (0.11) 2888 13.2
4fab(27) NAT 4.77 (0.06) 4.42 (0.07) 21040 13.8
111 res MI 11.49 (0.13) 21011 13.8
4fab(16) NAT 5.53 (0.08) 5.92 (0.10) 21137 14.1

MI 12.76 (0.09) 21033 13.8
3fxn(35) NAT 3.91 (0.12) 4.06 (0.08) 21514 14.3
138 res MI 12.94 (2.33) 21311 14.3
3fxn(20) NAT 4.44 (0.22) 4.12 (0.14) 21401 14.3

MI Not observed
1mba(20) NAT 4.44 (0.23) 4.34 (0.05) 21698 15.0
146 res MI Not observed
Atim(62) NAT 5.19 (0.10) 5.08 (0.11) 22423 17.4
247 res MI Not observed
Atim(50) NAT 5.77 (0.06) 5.96 (0.04) 22483 17.7

MI Not observed
Atim(36) NAT 6.66 (0.09) 6.74 (0.15) 22622 17.9

MI 9.97 (0.05) 22549 17.9
aNative structure.
bMisfolded (generally the topological mirror image fold) structure.
cThe number in parentheses is the standard deviation of the coordinate root-mean-square distance (in
Angstroms) between the crystallographic and predicted a-carbon traces (see also the legend for Table IV).
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In a very general sense, our current method is
most similar to the recently developed MONSSTER
algorithm that uses the CAPLUS model.6 It also
employs a reduced lattice model of protein, a back-
ground knowledge-based force field and a simulated

thermal annealing Monte Carlo procedure for fold
assembly. Using MONSSTER, about N/4 restraints
are required to assemble b-type and a/b-proteins,
while helical proteins required N/7 restraints. Here,
for a representative set of proteins, all types of folds

Fig. 8. Fold of 3fxn obtained using 20 tertiary restraints compared with the native structure. The
picture has been prepared using MOLMOL.42 The native secondary structure boundaries (helices
and b-strands) have been superimposed on the predicted structure. A slight distortion of one helix
(bottom right of the figure) and some distortions of the central b-sheet are noticeable.

Fig. 9. Representative structure of 4fab obtained using 16 tertiary restraints compared with the
native structure.
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could be assembled with knowledge of, on average,
N/7 tertiary restraints. In addition, the results are
less sensitive to the distribution of restraints. For
example, in the case of the 18–55 fragments of 6pti in
the CAPLUS model, the cRMSD was about 6–8 Å for
different sets of restraints. In contrast, in the side-
chain-based model, for all sets of examined re-
straints, it is about 4 Å. Furthermore, as evidenced
by the ability to fold the 247-residue TIM from a fully
expanded state, much larger systems can be treated.
With an increasing number of long-range restraints,
the accuracy of assembled structures increases and
seems be consistently better than for the previously
published methods. In addition, the resulting models
are found to be less sensitive to the restraint distribu-
tion. The current model also offers the advantage of
speed. For small proteins, the algorithm is now
essentially interactive. It takes about 5–10 minutes
of CPU time on a contemporary workstation to
assemble the relatively complex motif of a 68-residue
1ctf fragment. Since the cost scales approximately as
N3, assembly of larger structures requires more
time. Thus, a myoglobin folding simulation requires
about 2 hours of CPU time.

CONCLUSIONS

In this work, we have described a new model for
the assembly of protein structures from known sec-
ondary structure and a small number of exact ter-
tiary restraints. While the model only explicitly
considers side chain centers of mass, the effect of
backbone atoms is implicitly built into the model
force field, which also exploits the structural regulari-
ties seen in protein structures. Thus, the new model
is fully compatible with more complex models that

employ a larger number of united atoms per residue.
In all respects, this new method compares favorably
with previous approaches having a similar goal; the
assembly of tertiary structure from loosely encoded
secondary structural biases and a small number of
tertiary restraints. The most important aspect of the
new model is the very small number of tertiary
restraints required to assemble moderate resolution
folds. For a representative set of all types of single
domain proteins (all-a, all-b, a/b motifs), the re-
quired number of restraints is about N/7, with N the
number of residues in the protein. Furthermore, due
to a new, rapid treatment of side chain burial, it
should be possible to extend this method to multi-
domain proteins, which will be attempted in the near
future.

Another advantage of the new method is associ-
ated with the relatively simple and reliable protocol
of detecting a proper fold from less frequently gener-
ated misfolded structures. These misfolded struc-
tures are almost exclusively the topological mirror
images of the proper fold. In all cases examined to
date, the nativelike structure always has a lower
conformational energy. This and the small number of
required tertiary restraints suggest that the new
model’s underlying force field captures a number of
the essential aspects of protein interactions. At the
same time, the model is simpler and computationally
more efficient than previously employed lattice mod-
els.6,39 Due to a much lower computational cost (at
least one order of magnitude), it is possible to
assemble larger structures, including the 247-
residue Atim domain.

Finally, we note that preliminary work indicates
that it is possible to generate low resolution folds

TABLE VI. Comparison of Results for the CAPLUS and SICHO Models With Exact
Secondary and Tertiary Restraints

PDB
name

Number of
residues Type

Number of
restraints

cRMSD in Å from
the SICHO modela,b

cRMSD in Å from
the CAPLUS modela

1gb1 56 a/b 8 3.4 3.3
1ctf 68 a/b 10 3.2 4.2
1pcy 99 b 46 3.8 3.5
1pcy 99 b 25 4.9 5.4
1pcy 99 b 15 5.7 —
2trx 108 a/b 30 3.1 3.4
2trx 108 a/b 16 3.5 —
4fab 113 b 27 4.4 –
4fab 113 b 16 5.9 –
3fxn 138 a/b 35 4.1 3.9
3fxn 138 a/b 20 4.1 —
1mba 146 a 20 4.3 5.9
Atim 247 a/b 62 5.1 —
Atim 247 a/b 50 6.0 —
Atim 247 a/b 36 6.7 —
aAverage cRMSD of the Ca over an isothermal stability run.
bThe average cRMSD is reported from structures obtained after the SICHO model has been mapped into
the CAPLUS model and relaxed.
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using only a small set of probable side chain con-
tacts35 (predicted via correlated mutations analy-
sis43) and somewhat more elaborate potentials de-
scribing short-range interactions (derived from
geometrical analysis of sequentially similar protein
fragments). Several example structures such as myo-
hemerythrin (1hmd) and the complex b-type motif
immunoglobulin fold (1fna), have been assembled,
albeit with a lower fraction of successful experiments
than reported in this work. While this application of
the new model requires further refinement, it clearly
provides a well-defined framework for addressing
the more general aspects of protein structure predic-
tion.
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