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ABSTRACT: The traditional computational modeling of protein structure, dynamics,
and interactions remains difficult for many protein systems. It is mostly due to the size
of protein conformational spaces and required simulation time scales that are still too
large to be studied in atomistic detail. Lowering the level of protein representation from
all-atom to coarse-grained opens up new possibilities for studying protein systems. In
this review we provide an overview of coarse-grained models focusing on their design,
including choices of representation, models of energy functions, sampling of
conformational space, and applications in the modeling of protein structure, dynamics,
and interactions. A more detailed description is given for applications of coarse-grained
models suitable for efficient combinations with all-atom simulations in multiscale
modeling strategies.
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1. INTRODUCTION

Living organisms are the most complex chemical systems
whose function depends on a vast number of molecules, from
simple monomers through many small and medium-size
oligomers and copolymers (peptides, proteins, RNA, etc.) to
huge copolymers such as DNA. With some exceptions, proteins
are composed of 20 types of amino acids. Again with some
exceptions, all amino acids in living organisms have left-handed
conformations. Since typical protein chains consist of a few tens
to hundreds of amino acids, the number of possible amino acid
sequences of such copolymers is enormous. While sequences of
amino acid units in natural proteins look at first glance random,
they are certainly not.1 The majority of known natural proteins
fold into specific three-dimensional structures, while the vast
majority of random polypeptides collapse to somewhat less
dense unstructured states. Protein folding plays an essential
functional role in living cells, although this process could be
also observed at properly controlled in vitro experiments.
Owing to the impressive progress in the experimental methods
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of molecular biology in the last decades we now know around
120 thousand three-dimensional native-like protein structures
or their complexes, with resolutions from about 0.5 to 2−3 Å.
This is still only a small fraction of proteins with known
sequences,2 although for a large fraction of sequenced proteins
their three-dimensional structures can be predicted theoretically
by various combinations of bioinformatics and molecular
modeling techniques.3 Theoretical prediction of folded
(native-like) three-dimensional protein structures is just one
of the key tasks of computational structural biology. Native
structures are not completely fixed,4−6 but they change when
proteins perform their biological function, interact with other
biomacromolecules, or undergo unfolding−folding transitions.
Computational modeling of these processes is crucial for
creating realistic molecular pictures of biological protein
functions, interpretation of different experimental data, knowl-
edge-based drug design and various aspects of biotechnology,
etc.7−13 Classical atom-level molecular modeling can address
many of the these tasks, but its practical applications are still
limited by its algorithmic efficiency and the available computing
power.14 Even using a special-purpose supercomputer dedi-
cated to atomistic molecular dynamics (MD) simulations,15 it is
possible to simulate folding processes of only small, relatively
fast folding proteins16,17 or their dimerization processes18 (see
Figure 1). Similar limitations apply to molecular docking,

studies of dynamics of biomacromolecular systems, and other
related tasks. This is a major reason why development and
practical applications of coarse-grained protein modeling
methods is needed.19−33

The first coarse-grained protein models were proposed
almost half a century ago, although only very recently did
coarse-grained models become widely used, especially in
multiscale modeling pipelines. In 2013, the Nobel Prize
Committee awarded the Prize in Chemistry “for the develop-
ment of multiscale models for complex chemical systems,”
recognizing the early achievements of Michael Levitt, Ariel
Warshel, and Martin Karplus that included the coarse-grained
modeling of proteins34,35 as an important step in the
investigation of large biomolecular systems.36

In the last ten years the number of publications on
developments and applications of coarse-grained models of

biomolecules has increased several times.27 There are good
reasons for this increasing role. First, experimental molecular
biology provides enormous volumes of data that need
interpretation. Second, as noted before, in spite of the rapid
increase of computing power, applications of all-atom MD, the
classical tool for molecular modeling, are still limited to
relatively small systems and rather fast processes. Coarse-
grained models are computationally more effective and enable
simulations of much longer time-scales and/or larger sizes of
the systems studied. Third, well-designed coarse-grained
models of a not too low resolution enable reasonable
reconstruction of modeled structures to all-atom resolution.
This opens up a possibility of multiscale modeling, based on a
combination of the computational speed of coarse-grained
models with the high accuracy of classical all-atom MD.25,37−40

Coarse-grained protein models assume various levels of
reduced polypeptide chain representation19−32 (see section
2.2). The protein main chain could be represented by all heavy
atoms or by one or two united atoms per residue, while just one
or two united atoms typically replace the side chain. Various
definitions of models of interactions for coarse-grained
representations are possible (see section 2.3). Perhaps more
challenging “physics-based” derivations of coarse-grained force
fields start from classical all-atom models of interactions and
translate them into united atom potentials.21,30 Very different
are “knowledge-based” interaction schemes derived from the
statistical regularities seen in known protein structures.41,42

Both approaches to building interaction schemes have their
weaknesses and advantages. Sampling procedures can be based
on various versions of MD and/or Monte Carlo (MC) methods
(see section 2.4). Sometimes heuristic approaches are also used.
The majority of coarse-grained models use continuous
representations of the geometry of modeled structures. Few
coarse-grained models use lattice grids which enable significant
computational speedup compared to continuous models.43,44

Obviously, to achieve good resolution of a model the lattice
needs to be of dense spacing, which enables high coordination
numbers for the location of neighboring united atoms.
Many useful applications of coarse-grained protein models

have been described in the past few years.19−32 Coarse-grained
models have been successfully used in studying protein folding
mechanisms based on either very generalized protein-like
models or simulations of real proteins (see section 4.2).
Another productive area for coarse-grained modeling is protein
structure prediction. Every two years CASP (Critical Assess-
ment of Protein Structure Prediction) experiments provide a
good test of computational methods applied for structure
prediction (see section 4.3.4). Most leading groups successfully
use coarse-grained modeling tools, which are the methods of
choice in the most difficult de novo modeling cases, although
coarse-grained simulations also play a significant role in the
advanced tools of comparative (homology based) model-
ing.3,45−48

This review focuses on the prospective applications of coarse-
grained models, including protein structure prediction,
modeling of complex dynamic processes, protein interactions
with other proteins and peptides and modeling of membrane
proteins. Some of the most successful applications have been
recently achieved by the combination of coarse-grained models
with a wide range of computational techniques, including
classical all-atom modeling and careful implementation of
restraints derived from various sources of experimental data.

Figure 1. Application ranges for molecular modeling at different
resolutions: quantum, all-atom, coarse-grained, and mesoscale. The
plot shows approximate ranges of time scales and system sizes
(lengths). The presented application ranges can be expanded by
merging tools of different resolution into multiscale schemes.
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Future developments are expected to continue on this
integrative modeling trend.33,49−55

2. COARSE-GRAINED PROTEIN MODELS

2.1. Brief History

It has been about half a century since we have been witnessing
rapid progress of experimental structural biology. In particular,
we learned that proteins adopt specific three-dimensional
structures, essential for most of their biological functions. At the
same time, due to the rapidly increasing computer power and
progress in theoretical chemistry and physics, it became clear
that molecular modeling of biomacromolecules could be
essential for understanding molecular backgrounds of many
biological processes. It also became clear some time ago, and at
different levels it remains true today, that the productive
applicability of classical atom-level molecular modeling of
biological systems is limited to relatively small systems and
biologically short time scales (see Figure 1). In this context it
was crucial to solve the so-called Levinthal paradox.56 It was
known that globular proteins, or at least a large fraction of
them, adopt well-defined three-dimensional structures. Accord-
ing to Levinthal, such a process, with a random search for all
possible conformations of a protein chain consisting of one
hundred residues, would take longer than the age of the
universe. Therefore, the folding process could not be fully
random, since proteins of such size form their unique structures
usually in a time range of milliseconds. Today, thanks to many
theoretical and experimental studies, it is well understood that
local secondary structure preferences and other geometric
features of protein chains drastically decrease the number of
available conformations and therefore facilitate relatively fast
folding to native tertiary structures.
Understanding the protein folding mechanisms was probably

one of the main reasons for designing coarse-grained protein
models to perform simulations at time scales important for
biological processes. The first coarse-grained protein models
were developed almost 40 years ago. The classical work of
Levitt and Warshel34 already cited in the introduction is a good
example of successful early attempts at simulating an entire
folding process. In their protein model, a chain of pseudoatoms
(placed at Cα positions) replaced the main chain structure.
United pseudoatoms at centers of their average conformations
(see Figure 2) replaced the side chains, except for glycine. The
planar angle between three consecutive Cα was assumed
constant, equal to the statistical average seen in the known
protein structures. This was crude simplification due to the
significant difference between the average values of these angles
observed in various secondary structure fragments. Positions of
three consecutive Cα atoms defined the center position of the
side chain for the second residue. The only degree of freedom
in this model described rotation along the central pseudobond
for the three consecutive Cα atoms. A simple Lennard-Jones
potential described interactions between the united atoms.
Brownian dynamics (BD) was used as the sampling scheme. A
large series of BD simulations were performed for the bovine
pancreatic trypsin inhibitor, a small protein, and in some runs
native-like low resolution structure models were obtained. This
work clearly demonstrated that the packing and pairwise
interactions of side chains are one of the main forces leading to
specific folded structures. A year later Levitt57 proposed a
slightly more accurate version of this model, accounting for the
variable orientation of the united side chains. The torsional

potential for the main chain (and a side chain, where
applicable) degrees of freedom was developed from the
statistical analysis of conformational properties of representa-
tive dipeptides. Similar models were studied by Hagler and
Honig58 and by Wilson and Doniach.59 In the latter study the
authors proposed interesting derivation of statistical potentials
for residue−residue interactions and used the Monte Carlo
method for simulated annealing simulations of the folding
process. An interesting design of the side chain empirical
potential was also proposed by Crippen and Ponnuswamy.60

Related reduced models of small proteins, with various
approaches to the force field problem and sampling strategies,
including continuous and lattice representations, were pub-
lished by many authors,19−33,43,44,61−70 and we cite only
selected early reports.
A different area of research focused on protein-like models.75

Dill,76 Shakhnovich,77 Chan,78 and many others studied simple
cubic lattice chains and their folding to unique three-
dimensional structures.78,79 Most of these models treated
protein chains like sequences of two types of amino acids:
hydrophobic (H) and polar (P), although somewhat more
detailed models were also investigated.80 It was clearly
demonstrated (with exact statistics of all possible conforma-
tions of HP models) that specific sequences are needed for
unique structures, and a rigorous description was formulated of
dynamics and thermodynamics of folding processes in these
idealized systems. Intermediate resolution lattice models
(between idealistic “protein-like” and crude protein models)
such as diamond lattice81 or “chess-knight”82,83 models were
also studied. As pointed out by Park and Levitt84 and Godzik et
al.,85 while very attractive for their simplicity and allowing exact
statistical analysis, the low resolution lattice models of proteins

Figure 2. All-atom representation of a tripeptide and the
corresponding coarse-grained models. Various coarse-grained models
are presented: Rosetta centroid mode (CEN) representa-
tion,71CABS,72 UNRES,73 SICHO,74 and Levitt and Warshel
model.34 United side chain atoms are colored in orange. Pseudobonds
of fluctuating length are shown as springs and lattice models are shown
on the underlying lattice slide.
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could also be strongly biased due to their crude representation
of mutual orientations of protein chain fragments. Nevertheless,
these and other studies on low resolution models provided a
strong foundation for the development of contemporary
medium and high resolution coarse-grained models that we
focus on in this review.
We hope that this short overview of the earlier studies of

simplified protein models briefly explains various avenues that
led to the present state of the art in coarse-grained protein
modeling. In the main sections of this review we describe the
recent advances in coarse-grained modeling, focusing on the
models which are not only computationally attractive but also
give realistic reconstruction of atom-level views of the structure
and dynamics of protein systems. We also discuss promising
applications of coarse-grained protein models in the multiscale
modeling of large biomacromolecular systems.

2.2. Levels of Resolution

Proteins are particular semiflexible oligomers that form specific
linear sequences of amino acids. Amino acids are linked by
covalent peptide bonds, almost always adopting relatively rigid
trans conformation. This imposes some limitations on the
conformational space available for the protein backbone chain.
With a couple of exceptions, orientations of the side chains of
amino acids are asymmetric, and proteins of living organisms
usually adopt the L-handed conformation. The side chains are
of different size and geometry defined by their internal degrees
of freedom and interactions with their environment. This
results in additional biases in the polypeptide conformational
space.
Characteristic three-dimensional protein structures are

determined not only by the conformational properties of the
main chain, but also by the resulting specific packing and
interactions of the side chains. Interestingly, many (sometimes
multiple) random mutations do not change the primary
properties of natural proteins, while a different single mutation
can not only destroy their biological functions, but also their
structural properties.86 In other words, natural proteins are very
specific copolymers “edited” by evolution and the well-defined
three-dimensional structures of many of them result from a very
complex interplay of main chain flexibility, patterns of hydrogen
bonds and interactions between amino acid side chains.
Therefore, coarse-grained models, their representation of
protein chains, force fields, and sampling techniques must be
carefully designed, with the purposes and expected reliability of
such models taken into deep consideration.87

A broad spectrum of coarse-grained protein chain
representations were discussed in literature.19−33 In all cases,
the main purpose was to reduce the number of degrees of
freedom treated in an explicit fashion. For this reason,
pseudoatoms replace amino-acid fragments or even entire
amino acids (an equivalent term used in literature for “pseudo-
atom” is “united atom”). The conformational space of these
reduced atoms could be also restricted, leading to additional
reduction of the available degrees of freedom. The simple
lattice protein-like HP models mentioned in the introduction
are the extreme examples of this kind of simplification. In an
HP cubic-lattice model75 the two types of amino acids (H-
hydrophobic and P-polar) are restricted to a single lattice
position. Thereby the mutual orientations of all residues are
also restricted to cubic lattice angles. The conformational space
of such models (for chains of a limited length) could be exactly
enumerated and the behavior of various sequences of HP units

precisely studied. Although this level of simplification ignores
many important features of real proteins, the studies of HP
(and related) models explained some fundamental features of
protein-like polymers.75,78 It is also possible to consider even
lower resolution models that enable crude representation of
huge protein systems.88−94

In contrast to simple HP models it is possible to design a
structurally more realistic model based just on a single
pseudoatom per amino acid residue. A practical example is
the SICHO (side chain only) model in which only explicitly
simulated pseudoatoms are placed near the centers of the
amino acid side chains74,95 (see Figure 2). The excluded
volume, distribution of distances between consecutive
pseudoatoms, distribution of planar angles (dependent on
amino acid identity), and torsional angles used in the model
were derived from the statistical analysis of structural
regularities observed in known protein structures. These
distance and angle restrictions were additionally controlled by
the crude approximation of main chain geometry automatically
fitted to the positions of the side chain pseudoatoms of three
consecutive amino acids. The SICHO resolution is about 2−3
Å and provides a crude although quite realistic representation
of protein structure, including an acceptable picture of
secondary structure.96,97 Since the side chains in proteins are
most mobile and their contacts are crucial for the packing of
protein structures, the modeling schemes led by SICHO
pseudoatoms motion enable extremely efficient simulations of
protein dynamics, especially in the dense (near-native) state.
Unfortunately, this intermediate resolution coarse-grained
model was not extensively studied, in spite of quite promising
preliminary results.98−100

The first intermediate resolution coarse-grained models were
developed a long time ago, providing much deeper under-
standing of protein physics and defining new directions in the
development of novel methods of the multiscale modeling of
proteins and other biomacromolecules.19−32,37−40 The efforts
of Levitt and co-workers initiated this direction,34,35 see section
2.1. Typical intermediate resolution models use one or two
united atoms to approximate the geometry of the main chain
and side chains, respectively. Two examples of such models,
which allow a very broad range of applications, from structure
prediction to a study of protein dynamics and interactions, are
UNRES (united residue)73 and CABS (C-alpha, beta, and side
chain)72 models (see Figure 2 and section 2.5 for their
discussion). UNRES and CABS enable quite realistic, although
by no means exact, reconstruction to atomistic models.101−103

Almost exact coarse-grained protein models, like Roset-
ta71,104 or PRIMO,105,106 treat protein chain representation
closely to the atomistic level by introducing only some small
simplifications to speed up simulations but also for use in high-
resolution modeling. Various versions of Rosetta models use
interesting combinations of realistic coarse-grained resolution
(see Figure 2) and all-atom representation designed specifically
for efficient structure prediction and not for studying folding
dynamics. For further details and examples of other coarse-
grained representations, see section 2.5.

2.3. Force Fields

Designing force fields for coarse-grained models is to some
extent directed by the chosen level of resolution and the
expected ranges of applicability, although it is also the result of
a different philosophy of thinking about the molecular picture
of biological systems. On one hand, there are efforts to build
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classical coarse-grained force fields based on molecular physics.
On the other hand, the force fields of coarse-grained models
could be derived from the statistical analysis of structural (and
dynamic) regularities seen in the growing databases of
experimental structures, underestimating the atomic-level
backgrounds. Various combinations of these two fundamentally
different approaches are possible.107 Typically, in comparison
to its all-atom counterpart, the coarse-grained force field
smoothens out the energy landscape, and thereby helps to
avoid local energy minima “traps,” see Figure 3. Coarse-graining

also affects thermodynamic properties of a modeled system,
particularly the balance between enthalpy and entropy.
Reduction of the degrees of freedom affects the entropy of
the simulation system, which is compensated by reduced
enthalpic terms. In turn, a coarse-grained model may accurately
reproduce free energy differences but contributing enthalpy and
entropy values may be inaccurate. Such limitations are typical
for the majority of coarse-grained models.
2.3.1. Physics-Based Force Fields. A general formula for

a classical physics-based all-atom force field consist of six
terms108(eq 1). The first four of them, so-called “bonded”
terms, describe bonds deformation (eq 1a), bond angles
geometry (eq 1b), and rotation about certain dihedral angles
(eq 1c and 1d). The last two “non-bonded” terms describe
dispersion and repulsion effects (Lennard-Jones term, eq 1e)
and electrostatic interactions (Coulombic term, eq 1f).
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The equation above looks relatively simple but we have to
keep it in mind that the summations involve many different
atom types and, therefore, many parameters have to be defined.
These values are defined using quantum-mechanical calcu-
lations or experimental measurements (hence the name
“experimental force field”). Bond lengths with corresponding
stiffness values (b0 and Kb in eq 1a) as well as bond angle
parameters (θ0 and Kθ in eq 1b) are usually obtained from
crystallographic and spectroscopic data for small molecules.
Parameters for the Lennard-Jones term are usually optimized
using data from small molecule liquid density, heat of
evaporation, or free energies of solvation.109 Partial atomic
charges (qk in eq 1f), necessary for the evaluation of the
Coulombic term, are obtained from QM calculations. There-
fore, from a certain perspective, these force fields may be seen
already as coarse-grained with electronic degrees of freedom
averaged out.
In general, a physical-based coarse-grained force field can be

described by a similar formula as an all-atom force field (eq
1a−1f). In practice, a broad variety of additional expressions
going beyond the classical formula are used to describe the
energy of coarse-grained models. During the coarse-graining
process some atoms are removed and the degrees of freedom
related to them are averaged out. In this situation, internal
correlations between groups of atoms (now represented as
united atoms) must be introduced explicitly in the form of
multibody terms. Most approaches keep the distinction
between local energy terms and so-called contact potentials.
The former describe spatial correlations between pseudobond
vectors which no longer follow classical laws such as a harmonic
function and are often expressed by a kind of an arbitrarily
chosen function (like Chebyshev polynomials,110 splines, or
histograms). Nonbonded terms are usually represented by a
single formula depending on the type of interacting atoms, the
distance between them and, sometimes, their mutual
orientation and local neighborhood. Due to the diffused nature
of a spherical cloud representing a group of physical atoms,
these interactions tend to be softer and the 12-6 exponents in
the van der Waals equation may be substituted with more
appropriate numbers.111 How the final formulas of the coarse-
grained force fields look depends not only on the specific

Figure 3. All-atom versus coarse-grained energy landscape. The figure
illustrates the effect of the smoothening of the energy landscape in a
coarse-grained model as compared to an all-atom model. The
flattening enables efficient exploration of the energy landscape in
search for the global minima, while avoiding traps in the local minima.
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model of coarse-graining but also on the chosen method of
transferring atomistic formulas onto coarse-grained (united
atoms) potentials; good examples can be found in recent
reviews.30,112 Below we provide an overview of different
approaches for derivation of physics-based different coarse-
grained force field terms.
The least invasive step in coarse-graining is to neglect

nonpolar hydrogen atoms. This yields up to 10-fold reduction
of computational effort. CHARMM19113,114 and GROMOS115

are examples of such type of a commonly used force field.
Parametrizations of these force fields were done in the same
way as described above for the classical all-atom case. When
further reducing a molecular representation it becomes
necessary to determine physical parameters (as radii) for
unphysical moieties (coarse-grained pseudo atoms). A remark-
able example is the MARTINI force field,116 which has been
parametrized by reproducing the partitioning of free energies
between polar and apolar phases of a large number of chemical
compounds (see section 2.5).
The strategy to derive force field parameters from

experimental data becomes increasingly difficult with an
increasing number of distinct pseudoatom types in coarse-
grained representation. Below we outline a few systematic
approaches, proposed in the literature, to derive a coarse-
grained force field from results of all atom simulations of a
system (or systems) that were conducted with a reference
(“true”) all-atom potential uAA(r). Parameters for the
corresponding coarse-grained force field are derived to match
some features of the atomistic ensemble. The latter are usually
collected from all-atom molecular dynamics simulations but
quantum-mechanical approaches have also been ex-
ploited.117,118

In the iterative Boltzmann inversion (IBI) approach, which
was first proposed by Schommers,119 radial distribution
function (RDF) or functions ρAA(r) are used as the target
property. Starting from an initial form of a coarse-grained pair
potential uCG(r), a coarse-grained RDF is calculated and used to
improve the estimation of uCG(r) according to the formula:

ρ
ρ

≅ −+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟u r u r k T

r

r
( ) ( ) ln

( )

( )i i
i

1
CG CG

B

CG

target
(2)

where T is the absolute temperature and subscript indexes
denote iteration of the Boltzmann inversion procedure.
This procedure is repeated until successful convergence is

achieved, which, according to the Henderson theorem,120 leads
to the pair potential that is unique for a given ρ(r). In practice
however many pair potentials are able to reproduce a target
ρ(r) within an acceptable error. Reith et al.121 applied the IBI
procedure for two model systems of a known Hamiltonian
(Weeks−Chandler−Andersen and Lennard-Jones poten-
tials121) and concluded that, even though the procedure results
in an RDF that is undistinguishable from the target, the
resulting potential still differs from the true one. A possible
remedy might be to use additional target properties that may be
included in the IBI calculations,122 such as pressure.121

Nevertheless the IBI framework has become very popular due
to its simplicity and quick convergence, and usually several
iterations are required. In the most simplistic application of this
method, only one iteration of Boltzmann inversion is
conducted.
An all-atom RDF was also chosen as the target property in

the original formulation of the inverse Monte Carlo (IMC)

method123 for deriving a coarse-grained Hamiltonian defined as
a linear combination of terms. Similarly to IBI, initial
approximation to the coarse-grained Hamiltonian is iteratively
improved to minimize the difference between all-atom
reference simulations and coarse-grained RDFs. When
compared to IBI, the IMC method explicitly handles
correlations between coarse-grained force field parameters.
Coarse-grained force field parameters are calculated in an
iterative process where at each step a set of linear equations is
solved to find a better approximation to FF parameters. The
subsequent generalization of the IMC method known as
Newton inversion124 may utilize virtually any property derived
from all-atom simulation as the target distribution and the
mathematical formulation of the coarse-grained energy function
is no longer restricted to any particular form. The method uses
the Newton−Raphson approach to iteratively solve a set of
nonlinear equations.
The methods described above attempt to preserve the RDF

as much as possible during coarse-graining. In turn, the force
matching approach118 derives pairwise forces acting on coarse-
grained sites to match atomistic forces calculated for a set of
reference conformations. In the seminal formulation of FM, ab
initio calculations were used as the “true” potential. Cubic
spline was used to represent the coarse-grained forces and the
necessary spline parameters were fit by minimizing the mean-
square error between coarse-grained and atomistic forces
averaged over all trial configurations. The method was further
developed by Voth117,125 (under the name of multiscale coarse-
graining or MS-CG) who used MD trajectories as the reference.
To improve the accuracy of resulting coarse-grained potentials,
an alternative iterative scheme of force matching has been
recently proposed.126,127 Convergence of the iterative proce-
dure was reported as much faster than for the IBI approach
(both IBI and iterative FM128 may be derived on the grounds of
Yvon-Born−Green theory).
Relative entropy minimization (REM) relies on minimizing

the Kullback−Leibler divergence (relative entropy) between an
all-atom and a coarse-grained system.129 This parameter
measures the degree of overlap between all-atom and coarse-
grained distributions of states and has non-negative values with
zero meaning a perfect overlap. Therefore, unlike IMC and IBI,
the REM method in general may be used to quantitatively
compare different coarse-grained schemes or different mathe-
matical forms of a coarse-grained Hamiltonian. The actual
minimization of relative entropy may be done by the steepest
descent or Newton−Raphson129 or stochastic130 minimization.
An even more efficient algorithm that uses statistics sampled
from coarse-grained trajectories was recently proposed by
Shell.131 The formulation of the REM method is very general
and may be applied to optimize coarse-grained structure
mappings132 and dynamics.133 Correspondence between REM
and other methods reported above is discussed in a couple of
interesting publications.131,134

Conditional reversible work (CRW),135 yet another
approach to coarse-grained force field parametrization, relies
on a thermodynamic cycle to calculate energy of two coarse-
grained sites. The energy (reversible work) is calculated
between groups of atoms in their natural chemical environment
when restrictions are imposed on the mutual orientations that
can be adopted by these two groups due to surrounding
chemical moieties. The CRW method was recently extended to
derive dissipative particle dynamics friction functions.136
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The coarse-graining approaches outlined above have been
extensively used in various studies related to biomolecules in
their natural environment. This most notably includes lipid
bilayers and water. Coarse-grained approaches to membranes
are described in section 4.5. Water coarse-grained models were
recently reviewed elsewhere.137 Despite the differences between
the coarse-grained strategies described above, they all require a
reference (“true”) ensemble of all-atom conformations. It is
important to keep it in mind that the reference data were
collected in particular conditions such as temperature,
concentration or even size of the simulated system. These
variables are implicitly incorporated into the resulting coarse-
grained force field which in general may be not applicable to
other conditions. The problem of transferability between
different environments requires careful analysis.30

2.3.2. Knowledge-Based Statistical Force Fields.
Designing effective transferable force fields for coarse-grained
representations based on atom-level potentials is a challenging
task, as outlined in the previous section. On the other hand, we
know a huge number of experimentally determined protein
structures. The details of conformational features and atomic
packing, controlled by complex interactions, may be analyzed
on the grounds of statistical analysis. This led to the idea of
knowledge-based statistical potentials.
In their seminal work Tanaka and Scheraga138 derived a

coarse-grained potential based on their study of relative
frequency of atomic contacts observed in the crystal structures
of proteins. Interaction between two types of amino acid side
chains was defined as

− = +
⎛
⎝⎜

⎞
⎠⎟

E
k T

N
N

cln
B

observed

reference (3)

where Nobserved is the observed frequency of contacts of specific
side chains and Nreference is the expected frequency observed in
the reference state.
The procedure clearly resembles Iterative Boltzmann

Inversion. Unlike IBI, however, the derivation of knowledge-
based potentials is usually a single-step process. Thus, the
choice of the reference state, which is a priori unknown, is
crucial for this approach. Knowledge-based potentials can be
also derived using the Bayes theorem. Following the RAPDF
(residue-specific all-atom conditional probability discriminatory
function) potential formulation given by Samudrala and
Moult,139 we can define energy as a logarithm of the probability
that a particular conformation is “correct,” given its amino acid
sequence A and a vector of structural features X (such as
distances, contacts, angles, etc.):
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where P(X,A|C) is the distribution observed in the population
of “correct” structures. Most commonly a nonredundant subset
of PDB deposits is used for this purpose. The reference state
should be interpreted as the a priori distribution P(X,A). A very
similar formalism was applied by Baker and co-workers140 to
derive the Rosetta force field. The correspondence of
Boltzmann and Bayesian approaches has been described by
Xia and Levitt.141

The hypothetical reference states should be of the same
volume (and shape) as the real (observed) structure. We could
use, for instance, a set of similar protein structures with a
random sequence of amino acids, but with the same

composition. Miyazava and Jernigan61 introduced the concept
of quasi-chemical approximation: a perfect mixture of spheres
representing the 20 amino acid types with their molar fractions
corresponding to the probability of finding such an amino acid
in a database. That concept was further formalized by Sippl.142

In practice these molar fractions should account for the finite
size of a protein sequence, and thus proper composition
corrections are required.143−146 All-atom knowledge-based
contact potentials may be derived in the same manner147 as
in the case of DOPE,148 dDFIRE,149 GOAP,150 or ROTAS151

energy functions. In a similar way we can also define statistical
potentials describing short-range interactions,152 angular
preferences153 geometric aspects of hydrogen bonding,154 etc.
Apart from those mentioned above, alternative methods for

the derivation of knowledge-based force fields were also
proposed based on direct optimization of force field perform-
ance. Various criteria of success were proposed, including:
maximizing the energy gap between the “native” and “non-
native” conformation,155 maximizing the native energy z-
score,156,157 maximizing the probability of successful predic-
tion158 or minimizing the free energy of the native state.159

Several formalisms, interpretations, and extensions of knowl-
edge-based force fields have been published61,140,141,143,160−165

and recently reviewed.107,166,167

While the basic schemes of knowledge-based interaction
models generally follow the structure of physic-based force
fields, as defined by eq 1, their derivation can be conceptually
more challenging. Depending on the level of coarse-grained
representation, definition of the model force field, and the
complexity of the experimental databases used, the final
formulas may be composed from a significantly larger number
of specific terms than that given in eq 1. Moreover, some terms
of a knowledge-based force field can describe specific
conditional combinations of bonds, angular and nonbonded
interactions. One of the most extreme applications of the
knowledge-based strategy is probably the statistical force field
designed for the CABS model of single domain globular
proteins.72 The CABS force field treats amino acid interactions
in a context-dependent way and takes into account very
complex multibody effects, encoded in a large number of
composition and structure encoding parameters (for details of
CABS, see section 2.5). CABS and other coarse-grained
models168−170 based on context-dependent potentials, such as
CAS (implemented in I-TASSER method48), are now one of
the most effective tools in de novo structure prediction171−173

(see also section 4.3).
The strength of knowledge-based force fields emerges from

their simplicity and efficiency in protein structure prediction,
modeling of protein folding pathways, and related tasks of
computational biology. The weak point is a lack of trans-
ferability. While the force field derived for single domain
globular proteins will work well for a vast majority of single
protein and peptide structures, the interaction between
independent domains, interactions between proteins and
nucleic acids, etc. require derivation of a new component of
knowledge-based force fields. Fortunately, rapidly growing
structural databases make such derivations possible, although
more rigorous strategies for building new efficient and widely
applicable knowledge-based force fields remain one of the most
challenging tasks of large scale molecular modeling in structural
biology.

2.3.3. Structure-Based Models of Force Field. As
pointed out in the Introduction, we know many experimentally
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determined protein structures. These could be used as a
starting point for simulation studies. “Structure-based” models
(SBMs), also called Go̅-type models, employ a specific force
field approximation.174,175 Namely, only native-like interaction
patterns, seen in a specific known and usually folded structure,
are taken into account. In many cases, it is a significant
simplification, since it is assumed that the folding process is
directed by interactions that stabilize the known final structure.
The folding intermediates of many proteins are certainly not
necessarily native-like. Nevertheless, SBMs could be a quite
useful tool for modeling near-native protein dynamics,
especially when combined with non-native force field
potentials.176−180 There are also interesting modifications
(extensions) of the SBMs patterns of interactions in which
two, or another limited number, alternative basic structures are
used for defining the subset of possible interactions, see section
4.2.1.

2.4. Sampling Schemes

Energy function transforms the flat world of conformational
space accessible to a given biomolecular system into a very
rugged hypersurface. The sampling scheme is a method of
traveling through that hypersurface in search of desired
conformations. Sampling schemes in biomolecular modeling
were recently reviewed,181−185 and here we only briefly describe
the approaches commonly used in coarse-grained modeling.
They belong to three broad categories: molecular dynamics
(MD), Monte Carlo (MC), and heuristic approaches, such as
Genetic Algorithm,186 Taboo Search,187 or Ant Colony
Optimization.188

In MD, new configurations are generated by applying
Newton’s equations of motion to all atoms (or pseudoatoms)
simultaneously over a small time step. This determines the new
atomic positions and velocities and provides a trajectory
describing how a given system evolves in time. In coarse-
grained modeling, in which solvent is most often treated in an
implicit fashion, collisions and friction forces should be
introduced to mimic collisions of a solute molecule with its
environment.189 Since united coarse-grained atoms form a body
typically larger than a solvent molecule, the Brownian motions
theory is often applied to mimic the solvent effects. The
stochastic effect of solvent molecules is introduced by a random
displacement vector resulting from Brownian motions with zero
mean and variance-covariance defined by a diffusion tensor.
The frictional term, defined by Stokes’ law, is often omitted,
assuming that viscous force is much larger than the inertia
tensor and the resulting formulation is referred as Brownian
dynamics (BD). An important effect that must be included in
BD algorithms to capture correctly the dynamics of the
biomolecular chain is the hydrodynamic interaction (HI)
between coarse-grained atoms. This in practice requires
computing the square root of the 3N × 3N diffusion tensor
every time the tensor is updated during a simulation. This can
be achieved with Cholesky decomposition as proposed by
Ermak and McCammon in their pioneering work190 on the BD
algorithm with HI.
Discrete molecular dynamics (DMD), recently reviewed in

refs 191 and 192, may be considered another particular way of
solving Newtonian equations of motion. In this case, however,
all energy wells are flat, and energy gradients (i.e., forces) are
always equal to zero. DMD simulation assumes ballistic motion
at constant velocities and searches for the closest collision
event, saving computational time. In fact, the discrete, event-

driven implementation was published before the “classical”
time-resolved MD. DMD has been successfully applied for CG
models to studying protein structure193 dynamics194 and
aggregation.195

Monte Carlo (MC) methods essentially provide a random
sample of conformations coming from the desired distribution.
Boltzmann distribution, the most important case, is achieved
when the Metropolis criterion is applied to accept or deny a
new randomly created configuration. Typically, the new
configuration is constructed as a small modification of the
previous one. These may include translation and rotation of a
randomly selected molecule in the system, or a small change to
a subset of its internal degrees of freedom. Such a structural
modification (also termed “MC move”) must satisfy only very
general rules: detailed balance and ergodicity. This opens up
countless possibilities for introducing modifications that, while
altering the structure as much as possible, attempt to avoid
energy barriers and greatly reduce correlation between states
(see Figure 4). Through a properly designed set of moves the
Markovian property of the stochastic process leads to Markov
chain Monte Carlo stochastic dynamics. Various aspects of the
MC modeling of biomolecules have been recently reviewed.196

Figure 4. Example moves of a protein chain used for MC dynamics in
the CABS model.72 The upper panel shows local small-scale moves:
two-bond and three-bond. The middle panel presents a large-scale
move: small distance displacement of a chain fragment. The lower
panel shows a “reptation” move in which a “bubble” on a protein chain
is removed in one spot and randomly created somewhere else along
the chain. A long random sequence of all moves provides an MC
dynamics trajectory of the modeled protein chain. Large-scale and
reptation moves are attempted less frequently than local moves. For
clarity, the upper panel moves are shown with side chains (colored in
orange), while the remaining panels without side chains. Positions of
the alpha carbons are restricted to the underlying cubic lattice.
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Both MC and MD procedures typically have the same system
setup including representation of molecules, definition of force
fields, implementation of (periodic) boundary conditions, etc.
However, it is quite difficult to provide direct comparison
between the two. The equations used by MD remain always the
same and possibilities to speed up computation lie mainly in
handling constrains and numerical optimization. The Monte
Carlo approach may use virtually any structural modification

which does not violate its basic assumptions. MC moves crafted
for studying a particular system can be devised. Nevertheless,
various studies197,198 indicate that MC is faster than MD, and
sometimes many times faster. Another advantage of MC
sampling is that the implementation of energy terms is not
restricted to differentiable functions. This aspect may be
important when the mathematical form of a force field is
discrete, e.g. it is based on a histogram of a target property.

Table 1. Selected Coarse-Grained Protein Modelsa

coarse-grained model
model design (representation of a single

amino acid and force field design) example applications, additional notes and availability

AWSEM (associated
memory, water medi-
ated, structure and en-
ergy model) developed
by Wolynes, Papoian
and co-workers236

Up to three-bead representation: Cα, Cβ,
and O.

Model used for ab initio structure prediction of globular proteins,236 prediction of dimerization
interfaces of protein−protein complexes,237 modeling the mechanisms of misfolding and
aggregation238,239 and the role of electrostatic effects in protein folding and binding.240 AWSEM has
been also extended to model α-helical transmembrane proteins.241

Mixed (knowledge-based and physics-
based) potential

Available as open source software at http://code.google.com/p/awsemmd/

Bereau and Deresno
model, developed by
Deresno and co-work-
ers242

Up to four-bead representation: three
backbone beads (N, Cα and C′) and one
side chain bead located at Cβ.

Model used for studying protein folding243 and protein aggregation.242 Studies show that additional
model tuning is needed to improve the stability of proteins with β-type or α/β-mixed secondary
structure.

Knowledge-based force field Available as part of the ESPRESSO package:244 http://espressomd.org/

CABS (C-alpha, c-beta,
side chain) model, de-
veloped by Kolinski
and co-workers72

Up to four-bead representation: Cα, Cβ,
center of the side chain, and center of the
peptide bond. Additionally, restriction of
Cα positions to the cubic lattice (with
0.61 Å spacing) significantly speeds up
the calculations.

Model used in template-based or ab initio protein structure prediction, validated in CASP
competitions as one of the leading approaches;171 loop structure prediction;206 ab initio simulations
of protein folding101,207−209 and binding of intrinsically disordered proteins.212 Used as a simulation
engine in multiscale methods for protein structure prediction,205 modeling of protein flexibility210

and flexible protein-peptide docking.213

Knowledge-based force field Available with CABS-based tools at: http://biocomp.chem.uw.edu.pl/tools/

MARTINI model, devel-
oped by Marrink and
co-workers116

Up to five-bead representation: one back-
bone bead (placed at the center of mass
of the amino acid backbone), and up to
four side chain beads.

Model originally developed for lipids216,228 and subsequently extended to proteins.116 Clearly the most
popular model for the coarse-grained modeling of membrane proteins in the membrane
environment. Its numerous successful applications are summarized in this review in section 4.5 and
have been recently reviewed.225

Physics-based force field Available at: http://www.cgmartini.nl/, compatible with the GROMACS package:245 http://www.
gromacs.org/

OPEP (optimized po-
tential for efficient
protein structure pre-
diction) model, devel-
oped by Derreumaux
and co-workers246,247

Up to six-bead representation: full-atom for
the backbone (N, HN, Cα, C′, and O)
and single-bead for side chains (with an
exception of proline having three beads).

Model used for protein folding;247−250 aggregation studies;251,252 structure prediction of peptides and
small proteins;253 modeling of the role of hydrodynamics in protein relaxation and peptide
aggregation;247 modeling of proteins, DNA-RNA complexes and amyloid fibril formation in a
crowded environment;246 ab initio peptide structure prediction.254

Mixed (knowledge-based and physics-
based) potential

Available with OPEP-based tools at: http://www-lbt.ibpc.fr/

PaLaCe (Pasi-Lavery-
Ceres) model, devel-
oped by Lavery and co-
workers255

Two-tier representation (one for bonded
and another one for nonbonded inter-
actions). Three backbone beads (N, Cα,
and C′) are used for backbone repre-
sentation and one or two beads for the
side chain

Model used to maintain structures of folded proteins, and model their dynamic fluctuations and large-
scale force-induced conformational changes;255 protein flexibility prediction.256

Physics-based force field Available within the MMTK simulation package:257http://dirac.cnrs-orleans.fr/MMTK/

PRIMO model, devel-
oped by Feig and co-
workers106

Up to seven-bead representation: three
backbone beads (N, Cα, and combined
CO) and one to five beads for the side
chain (the representation was aimed to
be sufficient for high resolution protein
representation105)

Model used in peptide and small protein structure prediction;106 has been extended to membrane
environments.215

Physics-based force field Available from the authors on request and distributed as part of the MMTSB Tool Set:258 https://
mmtsb.org/

Rosetta model, devel-
oped by Baker and co-
workers104

Representation by all backbone atoms, Cβ
and center of the side chain. Coarse-
grained models are further refined in all
atom representation (with explicit hy-
drogen atoms).

Model widely used for protein structure prediction, validated during CASP competitions as one of the
leading approaches;104 recent developments include improved protocols for high resolution
refinement46 and de novo blind predictions;47 model implemented in numerous pipelines for
protein−protein docking,259 protein−ligand docking,260 antibody modeling,261 refinement of
crystallographic structures,262 refinement of NMR structures,263 protein-peptide docking,264,265

modeling of protein−DNA interactions.266

Mixed (knowledge-based and physics-
based) potential

Available at https://www.rosettacommons.org/ (RosettaCommons offers many web-interface servers
for using Rosetta, including ROSIE, an easy-to-use web interface for selected Rosetta protocols267).

Scorpion (solvated
coarse-grained protein
interaction) model,
developed by Basde-
vant and co-workers268

Up to three-bead representation: single
backbone bead and one to two side chain
beads.

Model initially developed for scoring protein−protein complexes.111 Later, the protein model was
combined with a water model and used for protein−protein recognition in a solvated environment of
the barnase/barstar complex268

Physics-based force field

UNRES (united residue)
model, developed by
Liwo and co-workers73

Three-bead representation: Cα, peptide-
group, and side chain.

Used in numerous protein folding studies;269−272 protein structure prediction (successfully used in the
CASP competition273); loop structure prediction;274 protein−protein interactions;275 protein−DNA
interactions;202 mechanisms of protein fibrillation,276 large-scale rearrangements of protein
complexes.277

Physics-based force field Available with accompanying tools at: http://www.unres.pl/
aModels are presented in alphabetical order.
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Finally, in the case of computationally demanding high-
resolution models, the sampling problem can be circumvented
by running a large number of independent simulations and
their further joint analysis.199−201

2.5. Examples of Protein Coarse-Grained Models

In Table 1 we present a brief overview of various coarse-grained
protein models. For some of the models typical for certain
classes of modeling strategies and/or very successful in some
applications, we provide a wider description. The first two of
the described models (UNRES and CABS) are quite universal,
allowing studies of protein structure, dynamics and interactions.
Many other coarse-grained models fit in this class. The third
model, PRIMO, is particularly interesting because it assumes
more accurate representation of protein structures and thereby,
by somewhat higher simulation cost in comparison with the
first two models, provides an almost atomistic picture of protein
structure and dynamics. The other two, MARTINI and Rosetta,
are probably the most widely used coarse-grained models.
MARTINI is typically used as a simulation tool for membrane
proteins, and Rosetta as a core module in a wide array of
methods dedicated for different protein types, systems, and
modeling tasks.
UNRES (united residues) is probably the most classical

model of medium resolution, and it enables dependable and
fast reconstruction of atom-level representation.73 Three united
atoms represent a single amino acid residue in this model (see
Figure 2). The main chain is replaced by two atoms
corresponding to Cα and the center of the Cα-Cα virtual
bond and one pseudoatom of an ellipsoid shape of revolution
representing specific side chains. Rotations of this ellipsoid
mimic side chain conformational mobility. The force field of
UNRES is rigorously derived from all-atom molecular
mechanics models of interactions. Various MD and related
methods have been used to sample the conformational space of
model chains. The physics-based approach to force field and
dynamic sampling enabled not only the structure prediction of
small proteins but also the study of dynamics and interactions
in larger systems.202 Recently the range of UNRES applicability
has been extended by careful implementation of structural
restraints to some applications of the model.202−204

CABS (C-alpha, beta and side chain) is a medium resolution
model. In comparison with UNRES, CABS provides similar
resolution, but it is based on qualitatively different interaction
and sampling concepts.72 The choice of united atoms for
modeling single amino acids is similar to that of UNRES except
for the side chains which are represented by two spherical
pseudoatoms, one centered on Cβ and the other placed in the
center of mass of the remaining portion of the side chain, where
applicable (see Figure 2). The main chain Cα positions are
restricted to knots of a cubic lattice of small spacing, equal to
0.61 Å. This lattice Cα trace is used as the only independent
variable that defines positions of other united atoms. The side
chain positions are based on the local main chain Cα−Cα−Cα
angle and the type of amino acid: the appropriate positions are
derived from the statistical analysis of protein structures from
the PDB database. Thanks to small fluctuations of the Cα−Cα
distance and the rapid “pre-computing” of all possible local
conformational transitions and associated changes of inter-
actions, lattice representation enables extremely fast sampling
of the conformational space, adding about 10-fold speedup of
simulation compared to otherwise equivalent continuous space
models. The force field of CABS is fully statistical, “knowledge-

based” and probably quite unique, since interactions are treated
as context dependent, and therefore take into account very
complex multibody (including solvent) effects. For instance for
single-domain globular proteins the interaction energy for
contacts of two oppositely charged side chains depends on their
mutual orientations. These interactions are strongly attractive
for parallel orientations and weakly repulsive for antiparallel
orientations. Indeed, polar amino acids are localized onto the
surface of a globule, and thereby their close contact must be
near-parallel. This regularity is reflected by statistical potentials
derived from the analysis of a globular protein database. CABS
sampling uses various Monte Carlo schemes. Since MC
simulations use only local conformational changes (see Figure
4) long-time simulations mimic chain dynamics. A model has
been successfully used in structure prediction (de novo and
comparative modeling),171,205,206 simulations of protein folding
mechanisms207−209 and flexibility of globular proteins,210,211

and molecular docking.212−214

PRIMO (protein intermediate model) is of higher resolution
than CABS or UNRES and provides another level of coarse-
grained resolution, closer to atomistic representation.105,106

The main chain is represented by three united atoms per
residue, and the side chains by one or up to four united atoms,
depending on their sizes and shapes. For instance, the
phenylalanine side chain is represented by three pseudoatoms
encoding size and orientation of the benzene fragment. This
subtle level of coarse-graining is sufficient for ensuring
noticeable simulation speedup in comparison to all-atom
simulations. The force field of PRIMO is very rigorously
constructed and maintains the structure of standard MD
interaction models. The scaling of the force field has been done
in a way that provides good transferability of protein systems.
What is important, the PRIMO model enables productive
studies of the solvent effect on protein dynamics, including
simulations of membrane proteins215 and reproducible folding
simulations of small proteins.
The MARTINI coarse-grained model was initially designed

by the Marrink group just for membranes composed of lipid
molecules.216 Further versions were subsequently extended to
include peptides, proteins116,217 and other small biomole-
cules.217,218 Schulten219 and Sansom220 groups have also
developed other protein coarse-grained force fields, compatible
with the MARTINI lipid force field. Others also proposed
several modifications to the model.221−224 MARTINI modeling
tools are now continuously refined by the research groups of
Marrink and Tieleman.116,225 The MARTINI force field is
based on one-to-four mapping, which means that on average
four heavy atoms including associated hydrogens are
represented by a single coarse-grained bead (see Figure 5).
Consequently, one coarse-grained water bead corresponds to
four water molecules. One coarse-grained ion bead mimics a
single ion including its first hydration shell. Small ring-like
fragments (e.g., aromatic amino acid side chains) or small
molecules (e.g., benzene, cholesterol) are mapped with slightly
higher resolution of up to two heavy atoms per one coarse-
grained bead. To properly reproduce the chemical nature of the
modeled systems, four main types of coarse-grained particles
are defined: polar (P), nonpolar (N), apolar (C), and charged
(Q). The four main types of coarse-grained particles are divided
into subtypes based on hydrogen-bonding capabilities (donor,
acceptor, both or none) and polarity (ranging from 1 = low
polarity to 5 = high polarity) giving a total of 18 unique
“building blocks”. The described mapping scheme provides a
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relatively straightforward and effective way of switching from
all-atom to coarse-grained representation for a wide range of
biological systems. Interactions between coarse-grained par-
ticles are described by a force field containing terms typical for
other classical force fields. Nonbonded interactions are
controlled by a Lennard-Jones (LJ) 12-6 potential, where εij
depends on types of interacting coarse-graining particles.
Electrostatic interactions are defined by the Coulombic energy
function. The nonbonded parameters have been adjusted to
reproduce experimental thermodynamics data of the free
energy of hydration, free energy of vaporization and partition
free energies between water and a number of organic phases for
each of the 18 types of coarse-grained particles.225 Interactions
describing bond lengths, angles and dihedrals are controlled by
a standard set of potential energy functions. Parameters were
calculated based on structural data derived either from
atomistic geometry or from an iterative procedure in which
parameter values for coarse-grained representation were
systematically adjusted to obtain satisfactory overlap with the
distribution function resulting from all-atom MD simulations of
corresponding atom groups. The practical application of the
method is facilitated by a simple mapping procedure based on
the “building block” concept, which allows generation of a
unified set of parameters and topologies for systems of different
types. What is very useful, MARTINI provides parameters for a
large number of molecules including different lipid types,
sterols, sugars, peptides, polymers, and more. The force field
was originally developed to be used in the GROMACS
simulation package226 but the general form of the potential
energy function also allowed its implementation in other well-
known MD simulation codes such as Desmond,227 GRO-
MOS,228 and NAMD.219

The Rosetta104,229 model uses two protein representations:
coarse-grained (see Figure 2) and all-atom, with all hydrogen
atoms present. Rosetta defines protein conformation in the
dihedral space. Thus, a coarse-grained polypeptide chain has
three degrees of freedom (phi, psi and omega) for each amino
acid residue. All-atom representation also includes Chi angles
for side chains. All the other internal degrees of freedom are
fixed to “ideal” values, although they might be relaxed in some
applications, e.g., at the final stage of high-resolution structure
refinement. Unlike other approaches to protein modeling, the
two representations in Rosetta are tightly connected and the
program seamlessly switches from low to high resolution. The
coarse-grained model includes all heavy atoms of the backbone,
beta-carbons and virtual atoms representing amino acid side

chains. A few dozens of energy terms have been defined in
Rosetta depending on resolution (either coarse-grained or all-
atom), experimental data included in modeling and the specific
problem under study. The Rosetta source code is organized in a
hierarchical manner.229 Low-level classes provide procedures
typical for macromolecular modeling such as evaluation of
scoring terms or altering internal degrees of freedom. They are
combined into protocols. Ab initio,230 the historically first
Rosetta protocol, is used to predict protein structure based
solely on its sequence information. Modeling is conducted in
coarse-grained representation. Conformational space is limited
also by the sampling scheme. To create a new conformation
from the previous one, a randomly selected fragment of known
protein structure substitutes a local structural fragment. The
fragments themselves are extracted from a nonredundant set of
proteins based on sequence and secondary structure similarity.
Three and nine amino acid fragments were originally used, but
in the current implementation231 their length is not restricted.
After every MC move, Cartesian coordinates must be recovered
for energy evaluation. The fragment assembly simulation is
conducted in a hierarchical manner. In the first stage only nine
residue fragments are used for sampling and the energy
function is limited to VdW, hydrogen bonding and collapsing
terms. Further stages introduce smaller changes to the structure
while the energy function becomes more elaborated. Unlike
other methods used for protein modeling, a single modeling
Rosetta run results in a single low-energy conformation. The
protocol must be therefore repeated many times to gather
proper statistics. This approach, however, ensures that the
conformations are statistically uncorrelated. Coarse-grained
conformations are further subjected to side chain reconstruc-
tion and all-atom energy minimization (FastRelax protocol).
To sample the conformational space, Rosetta uses several
approaches to alter dihedral DOFs: fragment insertions,
backrub moves,232,233 rotamer library234 or small perturbations
of particular internal coordinates. For example, the Rosetta
ProteinDesign protocol235 is based on the Monte Carlo search
strategy to optimize a protein sequence by mutating one
residue at a time. During a single step of the ProteinDesign
protocol, backbone DOFs remain fixed and side chain Chi
angles are modeled and assigned according to the rotamer
library. This step is followed by backbone relaxation to
accommodate the designed amino acids. A number of Rosetta
applications are also outlined in Tables 1 and 3.

3. MULTISCALE MODELING

3.1. Example Strategies

In principle, every simulation that allows transfer of information
between at least two different levels of granularity can be
considered multiscale. Multiscale methods are more efficient,
and enable analysis of larger systems in a longer time scale with
a simultaneous ability to preserve a high level of details when
necessary. This idea was applied to biological objects perhaps
for the first time by Levitt and Warshel in 1976 in their study of
mechanisms of enzyme action.35 Since then multiscale
modeling has found successful applications in the modeling
of proteins,25,38,39,278 membranes,279,280 ribonucleic
acids,281−283 and large protein−protein or protein−membrane
complexes.38,284−287 Depending on the given scientific
problem, several combinations of methods have been proposed.
In practice, the most common are QM/MM (quantum
mechanics/molecular mechanics) and all-atom/coarse-grained.

Figure 5. All-atom versus coarse-grained representation in the
MARTINI model.225 All-atom representation is shown in balls and
sticks, while coarse-grained representation in large spheres. The figure
shows an example lipid molecule, fragment of a protein chain, and
water representations.
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QM/MM modeling was historically the first multiscale
approach used for chemical computation. Currently there are
many different versions of the QM/MM approach; however, all
of them combine QM calculations for the active site which is
submerged in a simplified environment (full protein or
solvent).25 With time, QM/MM has become the most
important computational method for studying enzyme function
or other biomolecular processes that involve changes in
electronic structure,288−293 and it is the basis of modern
enzymology.294 For more information concerning the use of
QM/MM, please refer to relevant reviews.25,38,39,295−298

The all-atom/coarse-grained multiscale modeling approach
(see Figure 6) has emerged as one of the most promising tools

of computational biology, and it combines the efficiency of
coarse-grained simulations and details of all-atom simulations
for the characterization of a broad range of molecular
systems.299 In this methodology all-atom and coarse-grained
energy is frequently calculated as the sum of atomistic, coarse-
grained, and hybrid parts of the system:

= + +E E E EAA CG AA/CG (5)

where the terms for every part may be evaluated in different
ways.300

The coarse-grained potential is often highly simplified, and
even electrostatic forces are mostly neglected.301 The problem
of all-atom/coarse-grained modeling has been addressed quite
some time ago by Skolnick and co-workers.302 In their study on
folding pathways of the leucin zipper they discovered that the

accuracy of coarse-grained modeling could be significantly
improved when final structures from low-resolution simulations
were additionally refined with a detailed atomistic model. This
observation and further studies303 led to a hypothesis that it
should be achievable and beneficial to develop hybrid methods
for protein structure prediction. Another study undertaken by
Warshel and co-workers304 also used a simplified potential as a
reference potential for calculating all-atom free energies.
We can distinguish multiscale methods in which coarse-

grained simulations are used at the initial stages of the modeling
process to provide data for further all-atom simula-
tions44,299,304,305 (see Figure 6), or conversely, information
from all-atom simulations is transferred to coarse-grained
models.125,306,307 Such a strategy is called “serial multiscale
modeling”.37 There is also another group of methods which
may be called “parallel multiscale modeling” that combine fine-
grained and coarse-grained representations in a single mixed-
resolution simulation.308−310 A typical example of parallel
multiscale modeling may be simultaneous calculation in both
resolutions: simultaneous use of a coarse-grained model to
identify the area of possible conformations with an all-atom
method to improve accuracy of the resulting model.311 A widely
used strategy of parallel multiscale modeling is also treating a
large part of the system with a coarse-grained model while the
other, smaller section is treated with atomic resolution.25 Some
interesting applications of serial and parallel multiscale
modeling are provided in section 4.1.
Successful multiscale modeling, regardless of the type, needs

efficient and reliable algorithms for transferring information
between calculations with different resolutions.25 Multiscale
dynamic modeling is even more demanding since proper
calculation ought to be fast enough so as not to hinder the
benefit of coarse-graining. To date many different approaches
that define the concept of a boundary have emerged. However,
since information exchange methods are the key limiting
factors, new theories that would fill in these gaps are still of
great need. The boundary between different levels of modeling
can be arranged with fixed resolution as shown in the studies of
lipid bilayer permeability to small molecules,312 the large-scale
motion impact on the function of outer membrane protease
T313 or membrane-bound ion channel studies.308 Another
approach is to make them adaptive,314 which means that it is
allowed to change granularity of a selected part of the system
during the simulations on demand. Different methods for
flexible linking have been developed over time: AdResS,315

Adaptive partitioning,316 Hot spot method317,318 and ONIOM-
XS.319 However, despite the efforts, there is still a need for
developing better and faster algorithms that would allow
changing the resolution on-the-flow.

3.2. Reconstruction of Atomic Representation from
Coarse-Grained Models

Information transfer from coarse-grained to atomic representa-
tion is tightly connected with the task of reconstruction of
atomic details (see Figure 6). The problem of determining
protein structure only from the Cα trace or coarse-grained
representation is not new and can be found in literature
multiple times, and thus most algorithms are based on solutions
developed originally for protein structure prediction, homology
modeling or protein design.299

The process of protein reconstruction to atomistic structure
can be divided into two separate steps: rebuilding the backbone
and adjusting the side chain atoms. Several different approaches

Figure 6. Typical multiscale modeling scheme that merges coarse-
grained and all-atom modeling. In specific tasks, the resulting all-atom
structures could be used as an input for the next stage of coarse-
grained simulations. Other multiscale schemes are briefly discussed in
the text.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00163
Chem. Rev. 2016, 116, 7898−7936

7909

http://dx.doi.org/10.1021/acs.chemrev.6b00163
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.chemrev.6b00163&iName=master.img-007.jpg&w=223&h=303


Table 2. Example Reconstruction Algorithms

program name realized reconstruction task additional comments and availability

BBQ (backbone
building from
quadrilaterals)322

BBQ performs main chain reconstruction from the C-alpha
trace.

Method designed for robust and efficient backbone reconstruction. Tested on 81
nonredundant protein sets derived from PDB and generated near-native coarse-
grained decoys.

Uses a library of backbone quadrilaterals. Available as a standalone program, part of the Bioshell package.349,350

Modeller351,352 Modeller enables reconstruction and refinement from the C-
alpha trace or models with missing atoms.

The reconstruction procedure is available as part of the popular Modeller package for
comparative modeling.

Reconstructs an all-atom model based on a protein template in
coarse-grained representation. Energy minimization and all-
atom scoring may follow the reconstruction procedure.

ModRefiner102 ModRefiner performs all-atom reconstruction from the C-alpha
trace.

Method designed to handle unphysical local distortions in coarse-grained models and to
improve the physical quality of a local structure.

After backbone reconstruction, ModRefiner optimizes the
backbone H-bond network. Side chain reconstruction is
followed by additional optimization with a composite physics-
and knowledge- based force field.

Has an option to drive the refinement simulation toward the desired secondary
structure.

Available as a server or a standalone program. The standalone program has an option of
ab initio structure refinement.

NCN353 NCN performs side chain reconstruction from the protein
backbone.

Highly accurate algorithm for side chain reconstruction. Tested on 65 high resolution
X-ray structures. Available as a standalone program.

Uses optimized OPLS parameters, simulated-annealing search
strategy and a detailed rotamer library.

OPUS_Rota354 Opus_Rota performs side chain reconstruction from the protein
backbone.

Accurate method for side chain reconstruction. Tested on 65 high resolution X-ray
structures and the Wallner and Elofsson homology-modeling benchmark set.355

Available as a stand-alone program.It combines commonly used potential terms, solvation energy
with unique orientation-sensitive potential (OPUS-PSP) and
the Monte Carlo sampling scheme.

OSCAR356 OSCAR methods (-o, -star) perform side chain reconstruction
from the protein backbone.

Accurate methods designed for side chain reconstruction to obtain a realistic all-atom
protein model. Tested on 218 proteins and a RAPPER decoy set (loop side chains
reconstruction). Available as a standalone program.Combine accurate, orientation-depended, optimized side chain

atomic energy with a flexible (OSCAR-o) or rigid (OSCAR-
star) rotamer model.

PD2357 PD2 performs main chain reconstruction from the C-alpha trace. Method tested in all-atom reconstruction tasks in combination with Rosetta and
SCWRL4.0.

Uses a library of short fixed length backbone fragments for
constructing the structural alphabet with a Gaussian mixture
model.

Available as a server or a standalone program. The program features an optional energy
minimization step.

Pulchra323 Pulchra performs all-atom reconstruction from the C-alpha trace. Method designed for fast and robust calculations. Pulchra accepts even seriously
distorted input structures. Tested on 500 random decoy structures from the
prediction benchmark.

Uses a simple force field and steepest-descent minimization for
backbone reconstruction based on a modified algorithm
described by Milik et al.325

Available as a standalone command line application.

RACOGS299 RACOGS performs all-atom reconstruction from the C-alpha
trace.

Method designed for multiscale calculations and optimized to obtain a physically
realistic all-atom model from coarse-grained models. Tested on 606,000 coarse-
grained structures of the wild src-SH3 domain and ribosomal protein S6 and a
misfolded mutant as well as on a subset of 2945 PDB structures. Available as a web
server.

Uses backbone reconstruction based on the work of Feig324 and
Milik325 with an efficient side chain reconstruction method by
Xiang and Honig.358 Further addition of hydrogen atoms and
all-atom minimization is performed with AMBER 8.359

REMO360 REMO performs all-atom reconstruction from the C-alpha trace. Method designed for refining I-TASSER coarse-grained models. Tested on 230
nonredundant proteins as well as coarse-grained models. Tested in a blind test in
CASP8. Available as a web server and a standalone application.

Removes steric clashes in the C-alpha trace and rebuilds
backbone heavy atoms from a backbone isomer library. The
method predicts the hydrogen bond network and uses an
SCWRL algorithm for side chain reconstruction.

Rosetta (catoalla-
tom program)

Performs all-atom reconstruction from the C-alpha trace. Program available as part of the Rosetta modeling suite.104 Conformational search is
guided by Rosetta energy functions and, optionally, by experimental data such as EM
maps.

Uses a library of fragments extracted from known structure
fragments by combining them as rigid bodies in the Cartesian
space.

SABBAC361 SABBAC performs backbone reconstruction from the C-alpha
trace.

Method tested on a subset of proteins from PDB. This robust method provides an
answer even for degenerated C-alpha traces. Available as a web server.

Uses a small library of short fragments extracted from known
protein structures and a greedy algorithm for fragment
assembly and optimization.

SCATD362 SCATD performs side chain reconstruction from a protein
backbone.

Method tested on 180 proteins (the same benchmark set as for SCWRL 3.0). Available
as a standalone application.

Uses the rotamer library from SCWRL (version 3.0). SCATD
computes interaction scores between atoms, uses dead-end
elimination criteria and energy minimization via tree
decomposition.

SCWRL (version
4.0)363

SCWRL performs side chain reconstruction from a protein
backbone.

Method widely used in protein modeling pipelines. Tested on 379 proteins from PDB.

Uses a backbone dependent rotamer library, calculates self-and
pairwise energies, builds and solves graphs with a modified tree
decomposition algorithm.

Available as a standalone program and a dynamic-linked library for incorporation into
other software programs.

SidePRO343 SidePRO performs side chain reconstruction from the protein
backbone.

Method designed for fast side chain reconstruction. Tested on 379 proteins (SCRWL4
benchmark set), 94 proteins from the CASP9 data set and 7 protein complexes.
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have been proposed to solve the first task. These algorithms
may use analytical methods,320,321 statistical propensities322−325

or even whole short peptide fragments326,327 extracted from
known structures. Reliable side chain reconstruction is a more
difficult task. It has been shown that the side chain positioning
problem is NP-complete,328 which means that the complexity
of the calculation rises exponentially and no exact polynomial-
time algorithms are known.329 Most of the methods for side
chain assignment use a rotamer library330,331 built from known
structures and an energy function that allows finding a global
energy minimum. Many methods for side chain reconstruction
have been proposed: Monte Carlo sampling,332,333 dead-end
elimination,334−336 simulated annealing,337 local optimiza-
tion,330 genetic algorithms,338,339 integer linear program-
ming,340 graph decomposition,341,342 and other combined
approaches.329,343−348 In Table 2, the currently available
methods are briefly outlined. Finally, it needs to be noted
that protein conformations generated by coarse-grained models
may exhibit some small unphysical distortions that are typical
for specific coarse-grained models. Those distortions may be
not well tolerated by a reconstruction algorithm. Therefore,
before the application, the chosen reconstruction algorithm
should be tested in combination with a particular coarse-
grained model (see also the related comments in column 3 of
Table 2).

4. APPLICATIONS

4.1. Coarse-Grained Models in Multiscale Modeling
Pipelines

Over the years many research groups have undertaken studies
on the use of the all-atom/coarse-grained multiscale modeling
approach trying to answer different biophysical questions and
develop highly specific tools. As described in section 3.1, these
tools can be divided into parallel and serial multiscale modeling
approaches. The parallel approaches usually require additional
strategies for the integration and exchange between the
different levels of resolution, while serial multiscale approaches
are more common and straightforward.
MMTSB258 is a good example of a toolset that enables

custom parallel multiscale simulations. It combines packages
that allow simulation with all-atom resolution such as
CHARMM113 or AMBER364 combined with the coarse-grained
modeling approach, MONNSTER365 (based on a medium
resolution SICHO lattice model95). This approach was
successfully tested for scoring protein conformation, peptide
folding and prediction of missing protein fragments.258 Another
computationally complex task for which the parallel multiscale
approach has been successfully applied is modeling interactions
of proteins submerged in solvents or lipid membranes. In this
case solvents or membranes can be represented in a coarse-
grained manner while proteins are treated with atomistic
resolution.20 In one of such force fields, named PACE (protein
in atomistic details coupled with coarse-grained environment)
and developed by Han et al.,366 the united atom representation
of a protein is combined with the MARTINI coarse-grained
model of a solvent or membrane. In the folding simulations the
authors obtained satisfactory coherence with experimental data,

comparable to fully atomistic approaches.367 An interesting
parallel multiscale approach has been also described by
Machado et al. for simulating nucleic acids.300 In this model
the region of interest is treated with all atom details using the
AMBER force field368 while the rest of the system is
approximated by coarse-grained representation.369 For inter-
action calculations the method employs a common Hamil-
tonian function that serves for both the all-atom and the coarse-
grained simulation level and makes further extension to QM/
MM or a different level of coarse-granularity uncomplicated.
Another parallel model that allows using the multiscale
approach to simulate the crowding effect on peptides is
described by Predeus et al.370 In this simulation crowders
(proteins G) are represented with the PRIMO (protein
intermediate model)105 coarse-grained model, while peptides
of interest are accounted for in atomistic detail using the
CHARMM force field.113,114

Among serial multiscale methods it is worth to mention a
model developed by Zacharias principally for studying protein−
protein interactions.371 It combines all-atom GROMOS372 and
coarse-grained ATTRACT373 force fields. It allows for the
exhaustive Monte Carlo sampling of coarse-grained representa-
tion of the interacting proteins followed by an accurate all-atom
description of favorable protein−protein complex geometries.
Another method that combines the GROMOS force field with
the coarse-grained OPEP potential374 was presented in the
study of the amyloid-forming peptide.252 In this example of
serial multiscaling, coarse-grained simulation was used to
simulate aggregation of amyloid peptides, and then the stability
of the derived species was tested with all-atom resolution.
Finally, among multiscale all-atom/coarse-grained tools there

is a growing number of methods available as web servers that
are especially useful for nonexpert users. This trend of making
molecular modeling methods available as easy to use and
accessible web servers (so-called “serverification”267) is
expected to continue. Below we provide examples of multiscale
modeling servers that use coarse-grained modeling tools. More
detailed information concerning all-atom/coarse-grained multi-
scale modeling is available in recent reviews.39,375,376

4.2. Simulations of Protein Dynamics

So far, structural biology has focused mainly on the analysis of
static X-ray structures. Recent advances in experimental
techniques strongly indicated that protein function is in many
cases dictated by dynamics.5,6 Thus, the classical “structure
determines function” dogma has been extended to include
dynamics. Consequently, the ultimate goal of contemporary
structural biology is to add time, the fourth dimension, to the
characterization of protein structure. Unfortunately, a protein
energy landscape is highly multidimensional and tied to a
specific set of conditions (e.g., temperature, pressure, and
environment specifics). Therefore, the characterization of
protein dynamics, either by theory or by experiment, is very
challenging and the difficulty of the problem increases with the
scale of mobility and size of protein systems.

4.2.1. Protein Folding and Large Scale Dynamics. For
most proteins, the time scale of protein folding is beyond the
possibilities of all-atom MD with explicit solvent.16,17 Recent

Table 2. continued

program name realized reconstruction task additional comments and availability

Uses a knowledge-based energy function and artificial neural
networks.

Available as a web server and computer code.
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Table 3. Examples of Multiscale Modeling Web Servers

server name (reference) coarse-grained modeling task method summary, availability

Protein Structure Prediction

I-TASSER48,173,377 Uses a coarse-grained protein model
for the ab initio modeling of
unaligned regions (mainly
loops).170

I-TASSER performs comparative and ab initio prediction of protein structure. The method has been validated
during several recent CASP competitions as the leading approach for protein structure prediction.48,173,377

Available at: http://zhanglab.ccmb.med.umich.edu/I-TASSER/

CABS-fold205 Uses a CABS coarse-grained model
as a conformational search engine.

CABS-fold performs ab initio and consensus-based prediction of protein structure. The methodology was
validated during the CASP competition as one of the leading approaches.

Available at: http://biocomp.chem.uw.edu.pl/CABSfold/

Robetta378 Uses coarse-grained Rosetta repre-
sentation in the initial stage of
structure prediction.

Robetta provides ab initio and comparative modeling prediction of protein structure. The method has been
validated during several recent CASP competitions as one of the leading approaches. Other capabilities
include prediction of the effects of mutations on protein−protein interaction, protein design and protein−
protein docking. The server can also utilize NMR constraints data.

Available at: http://robetta.bakerlab.org/

Phyre2379 Uses a Poing380 coarse-grained
model for ab initio modeling.

Phyre2 performs comparative and ab initio prediction of protein structure. The method has been validated as
one of the leading approaches in CASP competitions. The server provides a suite of tools to analyze protein
structure, function and mutations.

Available at: http://www.sbg.bio.ic.ac.uk/phyre2

Pep-fold254 Uses an OPEP coarse-grained
model as a conformational search
engine.

Pep-fold performs ab initio structure prediction of peptide structure (between 9 and 36 amino acids). The
server allows user specified constraints such as disulfide bonds and inter-residue proximities.

Available at: http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD/

Protein-Peptide Docking

CABS-dock213,214 Uses a CABS coarse-grained model
as a conformational search engine.

CABS-dock performs flexible protein-peptide docking without prior knowledge about the binding site. During
on-the-flydocking, CABS-dock allows full flexibility of the peptide and moderate flexibility of the protein
receptor structure. The method has been tested on a large benchmark set of protein-peptide complexes and
has proven to be effective in building high and medium accuracy models.

Available at: http://biocomp.chem.uw.edu.pl/CABSdock/

pepATTRACT381 Uses an ATTRACT coarse-grained
model for rigid body docking and
scoring.

pepATTRACT performs flexible protein-peptide docking without prior knowledge about the binding site. The
best scored complexes are subjected to atomistic refinement using the iATTRACT382 procedure and all-
atom MD. The protocol was tested on 80 peptide−protein complexes.381

The web interface enables generation of input docking scripts and the docking can be performed on the user’s
machine with a local installation of the ATTRACT program.

Available at: http://www.attract.ph.tum.de/peptide.html

Rosetta FlexPep-
Dock264,383

Uses coarse-grained Rosetta repre-
sentation in the initial stage of
docking.

Rosetta FlexPepDock is a high-resolution docking and refinement protocol for modeling protein-peptide
interactions. The server requires an approximate specification of the peptide binding site (anchor residue).
The method has been tested on a large benchmark set of protein-peptide complexes and has been shown to
generate high-resolution models.265

Available at: http://flexpepdock.furmanlab.cs.huji.ac.il/index.php

Modeling the Flexibility of Globular Proteins

CABS-flex210 Uses a CABS coarse-grained model
as a fast simulation engine.

The method has been shown to generate a similar picture of protein flexibility compared to all-atom MD211

and NMR ensembles.384

Available at: http://biocomp.chem.uw.edu.pl/CABSflex/

NMSim385 Uses coarse-grained normal-mode
analysis

The method allows performing three simulation types: unbiased search of the conformational space; pathway
generation by targeted simulation; and radius of gyration-guided simulation. NMSim has been shown to be a
computationally efficient alternative to all-atom MD.

Available at: http://www.nmsim.de

FlexServ386 Uses three coarse-grained algo-
rithms for simulations of protein
flexibility: discrete dynamics, nor-
mal-mode analysis and Brownian
dynamics.

FlexServ allows complete analysis of flexibility using a large variety of metrics. The server can also analyze user
provided trajectories.

Available at: http://mmb.pcb.ub.es/FlexServ/

Protein Design and Interactions

ATTRACT387 Uses the ATTRACT coarse-grained
model for protein−protein dock-
ing

The web service supports systematic rigid-body protein−protein docking, as well as various kinds of protein
flexibility.387 ATTRACT has been successfully used to predict complex structures in various rounds of
CAPRI.388−390

The web interface enables generation of input docking scripts and the docking can be performed on the user’s
machine with a local installation of the ATTRACT program.

Available at: http://www.attract.ph.tum.de/

BeAtMuSiC391 Uses statistical potentials392,393

adapted to coarse-grained protein
representation to evaluate the
energetic change induced by the
mutation.

BeAtMuSiC allows fast assessment of changes in binding affinity between two proteins in the complex caused
by point mutations. The method was evaluated within the 26. CAPRI round and stood among the top
performers for the analysis of ∼2000 mutations in two designed inhibitors of influenza hemagglutinin.391

Available at: http://babylone.ulb.ac.be/beatmusic/

DOCK/PIERR394 Uses coarse-grained scoring func-
tions for protein docking.395

DOCK/PIERR performs docking of proteins given their individual tertiary structures. The docking algorithm
has been tested on docking benchmark data sets and has proven to perform similarly as other state-of-the-art
methods.396 The server has ranked fourth in the 2013 CAPRI server assessment.

Available at: http://clsb.ices.utexas.edu/web/dock.html

ENCoM397 Uses coarse-grained normal-mode
analysis.

ENCom allows prediction of the effect of point mutations on function, thermostability and dynamics of
proteins with multiple chains. In addition, the method generates comprehensive, geometrically realistic
conformational ensembles of mutated proteins.

Available at: http://bcb.med.usherbrooke.ca/encom.php
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advances in building specialized hardware dedicated to MD
simulations enable us to reach the 1 ms time scale for a small
protein,401 which means significant (100 fold) speedup in
comparison to the previous 10 μs record.402 Because of the
computational cost, unbiased (using no knowledge about the
native structure) MD simulations of protein folding with
explicit solvent are limited to small (up to ∼100 amino acids)
fast-folding proteins,16,401,402 while simulations of larger
proteins are restricted to studies of near-native dynamics or
high temperature unfolding. A few protein folding pathways
have been described in detail at atomic resolution, thanks to
combining experimental data with all-atom MD techni-
ques.403,404 Coarse-grained models offer significant extension
of the simulation time scale. For example, compared to all-atom
MD with explicit solvent, the speedup can be between 103 and
104 times for the UNRES model271 or the CABS model211 and
even 107 times for much simpler models.27

In the past two decades, the field of protein dynamics
simulation was dominated by the native-centric view of protein
folding.200 This view was supported by experimental studies
showing that, on a general level, folding can be described as a
simple two-state process, and that transition state structures are
very native-like. The assumption that native interactions only
are sequence-dependent ensures that the native structure is
always in the energy minimum. Introducing this assumption
into molecular models offered the possibility of significant
simulation speedup and unification of the protein folding
picture.174,175,177,178 The models with such an interaction
scheme, called structure-based models (SBM) or Go̅ models,

have become widely used in simulations of folding mechanisms,
folding kinetics and functional motions.177−180,405−407 Many
variations of SBMs proved to be valuable in descriptions of
conformational dynamics, which is interpreted by the native-
like character of the key transition states. However, the SBM-
based approach seems to be increasingly unsatisfying in the
context of emerging studies on a significant role of non-native
interactions in protein folding.408−410 Importantly, functions of
many proteins are associated with the existence of multiple
different conformations. Thus, it is obvious that building an
SBM force field based on a single native state structure may be
insufficient for the complete exploration of a conformational
landscape.411 Therefore, modern SBMs have been extended by
adding information about a few different conformational states
(multibasin models).411−413 Multibasin SBMs are built on the
same concept as single SBMs with the exception that they use
more than one conformational state (for example, two distinct
structures crystallized in different, bound and unbound, states
may be used) as references for simplified interaction patterns.
SBMs are also extended by using additional information, for
example enforcing protein motions414 or coevolutionary
information extracted from multiple sequence alignments.411

Regardless of the extension of SBMs, the fundamental question
arises of whether the interaction model based on a specific
structure, or selected structures, is sufficient in a particular case
to describe the real functional dynamics.
In principle, deep understanding of protein folding

mechanisms requires simulation models that are not biased
by structural information about the final native state, and that

Table 3. continued

server name (reference) coarse-grained modeling task method summary, availability

Protein Design and Interactions

RosettaDock398 Uses coarse-grained Rosetta repre-
sentation in the initial stage of
docking.

RosettaDock predicts the structure of protein−protein complexes, such as antigen−antibody pairs, enzyme−
inhibitor pairs or regulatory proteins. It has been successfully validated in the CAPRI blind challenge on
diverse targets, also in combination with the Funhunt classifier399 for selection of low-energy conformations
close to the native conformation from other low-energy ensembles.

Available at:http://graylab.jhu.edu/docking/rosetta/

RosettaAntibody261,400 Uses coarse-grained Rosetta repre-
sentation in the initial stage of
modeling.

RosettaAntibody uses a comparative modeling approach to build structures of complementarity determining
regions (CDRs). In the second stage, the CDR and H3 loop is remodeled ab initio and orientation of VL/
VH domains is optimized using a Rosetta protocol. Paratope side chains and loop backbones are refined
simultaneously. The procedure has been tested during the Antibody Modeling Assessment II experiment.261

Available at: http://antibody.graylab.jhu.edu/antibody

Figure 7. Folding pathways obtained in ab initio simulations using the UNRES coarse-grained model and Langevin dynamics.269 The pathways are
presented for two proteins 1CLB and 1E0G. The protein models are marked with the RMSD values (root-mean-square deviation from the
corresponding experimental structures, in Ångstroms) and simulation time. The simulations took a few hours of a single CPU time; therefore, the
UNRES model provided a three to four-order-of-magnitude speed-up relative to all-atom MD simulations.
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do not exclude different intermediates than fragments of the
native-like structure. Based on the earlier advances (see reviews
in refs 19−21 and 44), in recent years we have witnessed
protein (or peptide) folding mechanism studies using various
coarse-grained models that go beyond the SBM interaction
scheme: UNRES269−272 (see Figure 7), OPEP,247−250

PACE,415,416 the model by the Voth group,417,418 the Bereau
and Deserno model,243 CABS,101,207−209 or the TerItFix
approach.419,420 These examples demonstrate the usefulness
of models based on physics-based potentials, physics-based
potentials combined with terms from statistical analysis of
folded structures or solely on statistical potentials (CABS,
TerItFix). While physics-based models present a straightfor-
ward approach to the investigation of folding dynamics, the
application of statistical potentials raises questions about the
validity of such an interaction scheme to the simulation of
denatured structures. Nevertheless, it has been demonstrated
that the evolution of folding events, from denatured to near-
native states, guided by statistical potentials is consistent with
experimental data207,208,419,421 or with all-atom MD simulations
for small fast-folding proteins.420 Consequently, these results
strongly suggest that the nature of interactions (not necessarily
the geometry) that controls the denatured state of proteins is
qualitatively quite similar to the interaction patterns derived
from the statistical analysis of folded structures.
Proteins in the cellular environment encounter a multitude of

interactions that do not result in the formation of complexes.
The role of these nonspecific interactions is essential to the
mechanisms of life and therefore actively investigated.422

Cellular environments can be described at atomic resolution
or using coarse-grained models at different levels of coarse-
graining,423 i.e. implicit solvent models, molecular-shape
preserving coarse-grained models or spherical coarse-grained
models of solute biomolecules. Integration of such models at
different representation scales is the key challenge in the
construction of integrated models, which can serve as a
platform for in silico cellular models.423

Besides folding studies of single proteins/peptides, coarse-
grained models are also applied to various specific aspects of
protein folding. Example applications include studies of
misfolding mechanisms;238,272,424,425 aggregation mecha-
nisms26,31,424,426 (see section 4.4); the effect of post-transla-
tional modifications on protein folding and function;427,428 the
role of interplay between specific interactions (local/nonlocal,
non-native/native and other) in protein folding;408,427,429,430 or
the mechanisms of chaperonin-assisted folding.209,431−433

4.2.2. Protein Flexibility: Small-Scale Dynamics. Time
scales of biologically relevant protein fluctuations remain
computationally demanding or even beyond the reach of
atomistic models, and therefore coarse-grained models have
emerged as an inexpensive simulation alternative.434 One of the
main problems of large scale molecular modeling is that force
fields are not accurate enough, even the all-atom ones.
Consequently, modeling results may be different depending
on the force field choice.21,435−437 In 2007, Orozco and
colleagues examined whether different all-atom force fields
provide a consistent picture of near-native dynamics in aqueous
solution.438 This comprehensive study of the most populated
protein metafolds, using the four most popular force fields
(OPLS, CHARMM, AMBER, and GROMOS) and explicit
solvent, showed that the resulting dynamics picture is
consistent among the force fields. The all-atom simulation
data from the Orozco study438 have been subsequently used as

a reference for studies of different coarse-grained models as to
whether they yielded comparable results.211,439,440 These
studies tested SBMs439,440 (employing Brownian dynamics, or
discrete molecular dynamics, also with a simple pseudophysical
force field variant being a hybrid between the physical potential
and SBM) and a knowledge-based force field derived from
known folded structures (CABS model).211 All these coarse-
grained models provided a picture of near-native dynamics in
good agreement with the all-atom simulation data.
Moreover, it is important to highlight that the all-atom

picture of near-native protein dynamics obtained by Orozco438

was observed on a relatively short nanosecond time scale (10
ns). Current supercomputer capabilities encompass much
longer time scales and it has been shown that some important
conformational transitions of a folded protein may remain
undetected in submicrosecond simulations.17,441 Future
advances are expected to come with the availability of high-
resolution experimental data and with developments in all-atom
MD that will make this technique faster, and thus more
approachable.17 Nevertheless, in the nearest future, all-atom
MD will not be suitable for flexibility analysis, and thus coarse-
grained methods will continue to be the core of new efficient
simulation tools.434 Recently, several web servers using different
coarse-grained modeling techniques have been proposed:
CABS-flex,210 NMSim,385 and FlexServ386 (see Table 3).
Functional motions of proteins can be also predicted using

coarse-grained normal mode analysis (NMA).442 Due to its
success in the description of many systems and relatively simple
implementation, NMA has found numerous applications in
structural biology. However, certain issues about its limitations
should be kept in mind, especially when large amplitude
motions are considered.256 The limitations and practicality of
NMA are discussed in a review.443

The incorporation of protein flexibility in structure-based
drug design (SBDD) is critical in many cases to obtain a valid
picture of protein interaction sites.444,445 One of the important
challenges in including flexibility in SBDD studies is to choose
the right level of flexibility depending on system nature and
specifics of the SBDD study.446 Therefore, future developments
call for integrative methods merging SBDD approaches with
experimental data and with various simulation techniques
enabling efficient modeling of near-native dynamics434,442 but
also large distance movements of big macromolecules.447

4.3. Protein Structure Prediction

4.3.1. Importance of Computational Structure Pre-
diction. Due to genome projects, we know a vast number of
protein sequences that define their primary structure (the
UniProt database currently contains around 80 million
sequences and is growing exponentially448). Genome sequenc-
ing is now highly automated and relatively inexpensive.
Experimental determination of three-dimensional (tertiary)
protein structure is more challenging and still very expensive. In
spite of a significant effort of many top laboratories, the number
of experimentally determined structures is much smaller than
the number of known sequences (PDB currently contains
around 120 thousand structures449). This gap is still increasing.
The knowledge of protein structures is one of the major
requirements for understanding most of their biological
functions, which is crucial for medical sciences and biotechnol-
ogy. Therefore, theoretical prediction of protein native
structure is one of the important challenges of molecular
biology, theoretical chemistry and bioinformatics. While we can
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reliably predict a three-dimensional structure (structures) of
small molecules and simple polymers, the problem of protein
structure is significantly more challenging. Solvent properties
and interactions with other molecules and macromolecules
make the problem even more complicated and computationally
demanding. Simulations of protein folding, from the denatured
to the folded state based on all-atom MD, a classical simulation
tool, remain generally impractical (see section 4.1). The
application of coarse-grained models in protein structure
prediction is therefore very appealing. Coarse-grained modeling
plays an essential role not only in the ab initio prediction of
protein structure (based on sequence only), but also in the
most efficient strategies of comparative modeling (based on
structural similarities resulting from protein homology).
4.3.2. Comparative Modeling. The comparative modeling

of protein structures using their homology relations (homology
modeling) is certainly one of the most successful tools of
theoretical structural biology. Comparative modeling relies on
the observation that proteins with similar sequences usually
have similar 3D structures. This level of sequence similarity
does not have to be high: even moderate sequence identity
(∼30%) usually implies high similarity of 3D structures,
provided that sequence alignment is correct.450 The identi-
fication of template(s) (homologous protein(s) with known 3D
structure) and their sequence alignment to the target sequence
is a key stage of homology modeling. It provides a crude model
of the core of the target structure. The missing fragments of the
modeled structure (usually, but not always, the loops
connecting secondary structure elements) need to be added.
Plausible structures of short fragments (up to 10 amino acids)
can usually be predicted with useful accuracy and connected
with the template structure. This approach is very efficiently
used in the Modeller method,351,352 a classical tool for
comparative modeling based on high or moderate sequence
similarity. With decreasing sequence similarity, alignment
becomes less accurate and templates cover a smaller fraction
of the target structure. In such cases, classical comparative
modeling becomes very difficult and coarse-grained algorithms
are used for modeling poorly aligned and missing frag-
ments,206,274,451−454 like for example in the I-TASSER
automated structure prediction platform.48

I-TASSER is one of the most powerful tools for protein
structure prediction today (see also section 4.3.4). This method
is somewhat similar to the classical Modeller concept351 in
which fragments of homologous proteins are used as a core of
the modeled structure. I-TASSER,48 is based on a multilevel
(multiscale modeling) approach that uses various bioinfor-
matics and molecular modeling tools. I-TASSER uses a
sophisticated sequence (target) to structure (template) three-
dimensional “threading” schemes for selection of the most
probable structure fragments. These fragments are used to
build a core of the target structure. Subsequently a coarse-
grained CAS method173,455 (similar to CABS100,170,173) is used
for the Monte Carlo modeling of missing or ambiguous
fragments, and finally the structure is carefully refined. The
method is exceptionally successful in difficult comparative
modeling based on very distant homology, and thereby low
sequence similarity between the target and templates used in
modeling. Modifications of this method work relatively well
also in more difficult structure prediction tasks, including the
modeling of protein−protein complexes.456

Alternative to restriction of coarse-grained modeling to
difficult protein fragments, different alignments and several

templates could be used457 to build a set of distance restraints
for the coarse-grained modeling of the entire structure. Such a
strategy may be the best choice especially for a very distant
homology of template structures and it is employed for example
in Phyre2379 or CABS-fold205 web servers for protein structure
prediction.

4.3.3. Ab Initio Modeling. Using state-of-the-art tools of
comparative modeling enables computational prediction of high
resolution structures for a large fraction of newly sequenced
proteins.3 Nevertheless, structure prediction utilizing only the
target sequence and no homology relations (termed: “ab initio”
or “de novo” or “template free” modeling) is still the Holy Grail
of theoretical structural biology.47,458,459

As mentioned in section 2.1, the first attempts at using
coarse-grained models to study protein folding and to predict
protein structure ab initio started about 40 years ago. Since
then several similar and alternative reduced representations and
sampling schemes have been used by others and in most cases
it was possible to predict very low resolution structures of
simple and small proteins, or protein-like systems,170,230

peptides460,461 or loop fragments.206,274,451−453 Lattice models
of various resolution played an important role in the early
studies of protein folding.43,462 Hierarchical schemes, which
employ coarse-grained lattice models of increasing resolution,
have been successfully used for de novo simulations of the
protein folding process in a few small proteins.462−464

Presently, realistic de novo structure predictions are possible
for a significant fraction of small (up to 100, or so, amino acids)
and structurally not too complex proteins.465−467 However, it
has to be pointed out that the most popular contemporary
algorithms for ab initio structure prediction use some general
information about natural proteins. This can be done on
various levels. For example, Rosetta uses sequentially similar
structural fragments extracted from other proteins, not
necessarily homologous.71,378 The CABS algorithm can use
secondary structure predictions and knowledge based statistical
potentials derived from representative sets of protein structures.
Secondary structure predictions are not necessary, although
their use increases the accuracy and resolution of the resulting
tertiary structures. The QUARK algorithm,468 which proved to
be most efficient in ab initio prediction in the CASP
experiment465 (see also the next section), combines the best
features of Rosetta and CABS, i.e. structural fragments from
known protein structures and knowledge based statistical
potentials.

4.3.4. Critical Assessment of Protein Structure
Prediction Methods. To validate the accuracy and efficiency
of existing and newly developed methods for protein structure
prediction CASP (critical assessment of methods for protein
structure Prediction) experiments are organized every two
years.469 The experiment is worldwide and most research
groups leading in the development of protein structure
prediction methods participate (at least in some of its editions).
The work scheme of CASP is the following: A couple of
months before the meeting experimental structural biologists
provide several sequences of proteins whose structures are near
to be resolved or already resolved but not yet published.
Modeling groups make theoretical predictions of the structures
and deposit them on the CASP server. The organizers of the
experiment collect the predictions and the experimental data on
the new structures. Experts in the field evaluate the quality
(accuracy) of the predicted structures. The evaluation methods
are perhaps not perfect, and measurement rules of prediction
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accuracy have evolved slightly with time, but they definitely
provide reasonable ranking of the accuracy of the submitted
models.
Detailed discussions of successive CASP experiments can be

found in dedicated issues of the Proteins journal;469 however,
some general observations are possible. First of all, the accuracy
of theoretical structure prediction methods continuously (albeit
rather slowly) increases. Much of this progress can be
contributed to coarse-grained modeling methods, especially in
the last years. The leading groups used for instance the Rosetta
method,71,378 although methods using more free-space coarse-
grained sampling techniques also achieved good results, like the
CABS model.171 In some of the last CASP editions impressive
predictions were provided by the Zhang group using I-TASSER
(see section 4.3.2) and QUARK methods.455,458,465

Several other recently developed methods of multiscale
modeling in structure prediction were also successful in the last
CASP experiments.470−472 Another, and less obvious, trend
could also be noted. In the early CASP exercises, the best
predictions were achieved by comparative modeling methods,
where the key issue was the best sequence alignment and the
modeling of the missing fragments was relatively simple, usually
based on Modeller351,352 (or similar) software. Difficult de
novo targets were rarely predicted with realistic low-resolution
accuracy. In the recent CASP experiments, the methods
combining comparative modeling with tools for de novo
modeling have become the most effective.

4.4. Protein Interactions

Protein−protein interactions (PPIs) play a fundamental role in
controlling a wide range of biological processes including cell-
to-cell interactions, signaling transduction pathways and
regulatory cascades inside the cell. PPIs are responsible for
protein affinity and recognition, protein−protein assembly,
protein oligomerization and aggregation, and many more.
Moreover, it is estimated that over 80% proteins do not operate
alone but in complexes.473 Therefore, detailed understanding of
PPIs is becoming one of the major objectives of system biology.
The recent development of coarse-grained techniques makes
them a promising and powerful tool for PPI modeling.29 In this
section, we focus on the overview of coarse-grained methods
used in modeling protein−protein or protein-peptide inter-
actions. What’s important to note, there are also lively fields of
research dedicated solely to the coarse-grained modeling of
spec ific prote in in terac t ions , for example wi th
DNA,202,407,474,475 RNA,476,477 or other ligands.478,479

Coarse-grained models for PPI description should efficiently
sample the evolution of large multiprotein systems over long
time scales. On the other hand the level of coarse-graining
should maintain a realistic description of side chain
physicochemical properties and their interactions that control
the formation of protein complexes. Moreover, modeling the
protein−protein interface may require realistic prediction of
induced conformational changes of interacting molecules, or
even prediction of protein folding pathways. Sometimes the
binding mode of two proteins may be modulated by
interactions with other small molecules present in the
surrounding environment.480 Recent developments in the
field of coarse-grained PPI modeling focused mainly on three
areas:29 knowledge-based molecular docking (using structural
databases, bioinformatics and/or experimental data to guide the
assembly of complex subunits), de novo molecular docking

without the a priori localization of the binding site, and the
modeling of large scale protein assembles and aggregates.
A growing amount of various experimental data provide a

valuable source of information for knowledge-based molecular
docking.52 In the most favorable circumstances, the available
crystal structures of protein complexes may be used as
templates for the comparative structure prediction of other
homologous complexes and subsequently coarse-grained
techniques, often combined with all-atom scoring, can be
applied for efficient refinement.373,390,396,481,482 Such a situation
is rare and in most cases very limited data are available.
Fortunately, even partial structural information which allows
the identification of only small fragments (or even single
residues) of the interface of two interacting proteins is of great
importance for PPI prediction because it largely reduces the
conformational space that needs to be sampled. A variety of
experimental data can be used for derivation of spatial restraints
that may significantly enrich the coarse-grained modeling
procedure.483 Periole and co-workers used AMF pictures
showing organization of rhodopsin in disk membranes as a
starting configuration for the coarse-grained MD simulation of
interacting rows of dimers.484 Restraints derived from
comparative modeling were used in the CABS coarse-grained
model72 to predict a three-dimensional structural model of a
partial telomerase elongation complex composed of three
essential protein domains bound to a single-stranded telomeric
DNA fragment in the form of a heteroduplex.485 The
experimental data may guide the docking process by localizing
protein binding interfaces or by identification of interacting
conformations. Even weak distance restrains facilitated more
accurate structure prediction of complex systems in the CABS
method.171 Structural restrains could be also used to validate
predicted protein assemblies486 and to improve the template-
based docking procedure.487 Guerois and co-workers proposed
InterEvScore,488 a scoring function using a coarse-grained
statistical potential including two- and three-body interactions,
for protein−protein docking evaluation. Combination of this
potential with evolutionary information considerably improved
scoring results compared to other methods (ZDOCK, ZRANK,
and SPIDER) on the protein docking benchmarks tested. Due
to the complexity of the PPI prediction problem the availability
of experimental data that can enrich the coarse-grained
modeling procedure is the decisive factor for prediction
accuracy for a vast majority of protein complexes.
The de novo docking methods for PPI prediction aim at the

identification of the protein−protein contact interface. This
task becomes computationally extremely demanding when
structural changes on docking have to be considered. Given the
high computational cost of flexible docking, coarse-grained
models offer an efficient and promising alternative to all-atom
docking approaches. For example, Fernandez-Recio et al.
developed pyDockCG,489 a new coarse-grained potential for
protein−protein docking scoring and refinement, based on the
coarse-grained UNRES model.73 In this work, new terms
accounting for Coulomb electrostatics and solvation energy
were proposed and tested. The pyDockCG yielded similar
results to those produced by all-atom scoring function but at
much lower computational cost. Another coarse-grained force
field, the SCORPION,268 was used in a series of coarse-grained
MD simulations of protein−protein recognition in water for the
barnase/barstar complex. The method employed coarse-
grained potentials derived from the AMBER all atom force
field with implementation of the new polarizable coarse-grained
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solvent (PCGS) model, whereas protein internal flexibility was
accounted for by the elastic network model (ENM). The
method was able to reproduce conformations very close to the
native bound structures in five of a total of seven coarse-grained
MD simulations. In the work of Frembgen-Kesner and
Elcock,490 application of coarse-grained Brownian dynamics
(BD) simulations that included description of intermolecular
hydrodynamic interactions reproduced the experimental values
of association rate constants for the formation of the barnase-
barstar complex. In the context of discrete molecular dynamics,
a new coarse-grained force field has been recently introduced to
investigate PPI and conformational sampling of multiprotein
systems.491 Interestingly, it was also reported that coarse-
grained models can accurately reproduce interaction strength
for protein complexes of known structure.492

An interesting example of a coarse-grained approach to
protein docking is the ATTRACT model.371 Starting from
2003, the ATTRACT model has been systematically improved
and evolved in several docking applications. Initially, the
ATTRACT force field was a molecular-shape preserving coarse-
grained model with no internal main chain connectivity, with
only nonbonded intermolecular terms.371 The protein side
chains were treated as an ensemble of rotamers that were
discriminated during the search of relative association
geometry.371 Flexible interfacial loops, allowing for large
amplitude movements, were further treated by using an
ensemble of pregenerated loop conformations and a mean
field approach.493 These choices allowed very rapid search
while preserving good accuracy for the search results. The
initial force field was further modified for better efficiency using
a different functional form for van der Waals terms.494 Global
protein flexibility was introduced along normal modes of
deformation in a Gaussian network.373 Recently, a multiscale
method (ATTRACT combined with all-atom) was proposed
for the refinement of protein complexes.481 ATTRACT has
been also applied to the analysis of the internal mechanics of
proteins and detection of rigid amino acids using Brownian MD
simulations within a Gaussian network,495 protein−DNA
docking,496 protein-peptide docking,381 integrative serial multi-
scale modeling using interactive simulations with the Biospring
engine497,498 and to investigate large oligomeric assemblies.498

Importantly, the ATTRACT has been successfully used for the
prediction of protein complexes in different rounds of CAPRI
experiments388−390 that are discussed in the next paragraph.
The ongoing progress in protein−protein docking and PPI

identification is addressed in the Critical Assessment of
Prediction of Interactions (CAPRI).499,500 CAPRI is a
community-wide experiment for prediction of the molecular
structure of protein complexes. From 2001 until now, 34
rounds took place. In each round, a number of protein−protein
complexes whose crystal structures have been solved recently
are designated as targets for blind prediction using computa-
tional methods. In various CAPRI rounds, the ATTRACT
coarse-grained model (described above) proved to be
successful as an ensemble docking approach that involves an
implicit flexibility of protein complexes388−390 (the classification
of protein docking approaches with regard to the treatment of
protein flexibility is presented in the review445). CAPRI results
show that the main problem in docking strategies lies in the
search algorithms, especially in the treatment of large-scale
conformational changes, and in the scoring functions.501−503

The coarse-grained strategies are considered promising
alternatives for the future implementation of large-scale protein

flexibility into on-the-fly docking (explicit flexibility) algo-
rithms.445,504 Such trends are represented by two methods
based on Rosetta104 and CABS72 coarse-grained models that
allow for significant structural changes during on-the-fly
protein-peptide docking213,214,383,505,506 (see Figure 8).

Coarse-grained methods also remain an effective solution for
an ensemble docking approach, as demonstrated by a
pepATTRACT method for fully blind protein-peptide
docking381 (see Table 3).
The modeling of large scale protein assemblies and

aggregates is another area in which applications of coarse-
grained modeling have shown promising results.53,89 A good
example is the application of coarse-grained modeling
techniques for the investigation of large complexes of
membrane proteins (see section 4.5). In a recent work the
coarse-grained MD approach with a push−pull-release (PPR)
sampling strategy was used for a set of five well-known
protein−protein complexes to describe the energy landscape
and molecular forces that stabilize protein association.507

Hansmann and co-workers275 used the UNRES force field
with MD replica exchange simulations to study the self-

Figure 8. Protein-peptide docking with full flexibility of a protein loop
region close to the binding site. The upper panel shows protein
receptor flexibility during docking simulation. The starting protein
structure (experimental structure in an unbound form) is shown in
green. Simulated protein models are presented in blue while the
flexible loop region in orange. The lower panel presents comparison of
the predicted protein-peptide complex (blue) with the experimental
structure of the complex (red) and the starting structure (green).
Docking was performed using a coarse-grained CABS-dock method
with no knowledge about the binding site or peptide conformation.
During docking simulation the peptide was allowed to be fully mobile
and flexible. The RMSD between the predicted and experimental
peptide structure (after the best superposition of the receptor
structure) was 2.03 Å. The example is described in detail elsewhere.214

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00163
Chem. Rev. 2016, 116, 7898−7936

7917

http://dx.doi.org/10.1021/acs.chemrev.6b00163
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.chemrev.6b00163&iName=master.img-009.jpg&w=178&h=282


assembly and PPI of a homotetrameric ββα (BBAT1) protein.
They found that the folding and association pathway could be
described by three separate steps, whereby association to a
tetramer precedes and facilitates the folding of the four chains.
Misfolded or partially unfolded proteins may lead to large scale
aggregates, responsible for many pathological conditions. The
molecular basis of aggregation-linked diseases is actively
investigated using computer simulations.251 In the reviews of
Shea and co-workers31,426 the most recent computational
approaches to protein aggregation are presented, from coarse-
grained models to atomistic simulations. A wide range of
coarse-grained methods with different resolutions and para-
metrization schemes have been described.246,508−514 Coarse-
grained models can explain different aggregation pathways and
cover long time scale stages of the aggregation process that are
beyond the reach of atomistic simulations (see Figure 9).
Finally, a growing application area for coarse-grained

modeling techniques are binding studies of intrinsically
disordered proteins (IDPs)515 or intrinsically disordered
regions (IDRs) of other biomolecules.516 There is growing

evidence on IDPs or IDRs playing important functions in
cellular mechanisms.517−520 These functions are frequently
involved with large-scale conformational transitions, for
example from a disordered to a folded/bound state. Since the
experimental characterization of IDP/IDR binding is extremely
challenging,521 simulation techniquesincluding coarse-
grained modelshave emerged as an alternative or supple-
mentary approach.522−525 Similarly as in the field of protein
folding, the major challenge in IDP simulation is the efficient
treatment of large time scale dynamics, while maintaining
sufficient accuracy.525 In the past decade, the KIX/pKID
system526 has become a model protein complex for computa-
tional studies of the folding and binding of a disordered protein.
Despite a small size of the pKID/KIX complex, atomistic MD
simulations are rather limited to the conformational search in
the neighborhood of the native complex or to high-temperature
unfolding.23,527 Most of the computational studies of the pKID-
KIX binding process used coarse-grained structure-based
models (with a natively biased force field, see section
4.2.1).528−532 Some of those studies used coarse-grained

Figure 9. Comparison of all-atom and coarse-grained modeling capabilities applied in simulations of the aggregation processes. The upper panel
emphasizes the ability of coarse-grained models to model a full spectrum of aggregates that occur on different aggregation pathways, from a single
monomer to a highly ordered fibril, including: (1) elongation by prestructured monomer addition, (2) lateral growth by templated protofilament
assembly, (3) elongation by dock-lock monomer addition, and (4) growth by dock-lock oligomer addition. The lower panel highlights the
capabilities of all-atom approaches limited to the forming of small oligomers or the short-scale dynamics of formed aggregates. The “Under
Construction” sign emphasize the inaccessibility of the intermediate aggregation stages to all-atom modeling. Adapted from ref.31 Copyright 2014
American Chemical Society.

Figure 10. Mechanism of coupled folding and binding of the pKID/KIX complex as revealed by coarse-grained modeling.212 Docking simulations
allowed full flexibility of the disordered pKID during a blind search for the binding site onto the KIX surface. During docking, the movement of the
KIX backbone was limited to near-native fluctuations.
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structure-based models extended by an additional non-native
interaction component530,531 and resulted in showing the
possible important role of non-native interactions in the
binding mechanism. Recently, the pKID/KIX binding mecha-
nism has been also studied by de novo simulations (without
prior information about the pKID native arrangement) using
the CABS coarse-grained model.212 Those simulations, starting
from random pKID structures, yielded an ensemble of transient
encounter complexes in good agreement with experimental
results. The general description of the observed folding and
binding mechanism is provided in Figure 10. In general, since
the interest in IDP/IDR functions is relatively new, the power
of coarse-graining seems not to be sufficiently exploited in the
field yet. However, we have been witnessing very recently a
growing number of studies on coarse-grained-based method-
ologies dedicated to modeling IDPs533−535 or IDRs,536

including studies focused on the efficient parametrization of
interaction models using available experimental data,537,538

simulation of IDP in a crowded environment,539 or applications
of coarse-grained modeling to particular IDP/IDR sys-
tems.540−544

4.5. Membrane Proteins

Membrane proteins (MPs) are involved in a variety of
important biological functions, such as transmitting stimuli
from the outside to cell interior, transport of molecules across
plasma membranes and cell adhesion. MPs are also targets for
over half of the currently used drugs.545 Due to the large size of
transmembrane proteins and their specifically oriented environ-
ment that needs to be somehow taken into consideration,
coarse-grained modeling strategies seem to be well suited for
the computational studies of MPs. The support of coarse-
grained modeling is especially useful and needed in MP
structure prediction, since the experimental structure determi-
nation of MPs is a very challenging task.545,546 In this section
we focus on applications of MARTINI,116,216,217 the most
popular coarse-grained model for the investigation of protein−
membrane systems (see the description of MARTINI in section
2.5).
The first applications of the MARTINI model proved to be

efficient during the simulation of self-assembly547 and
fusogenicity548 of small lipid vesicles. Interestingly, the method
allowed modeling rare and slowly occurring processes like flip-
flop549 and lipid desorption,550 bending and deformation of
asymmetric bilayers,551 fusion of lipid membranes,552 organ-
ization of proteins and peptides into lipid bilayers, protein−
lipid interactions, protein oligomerization, conformational
changes of tertiary protein structure and many more. The
computational modeling of those phenomena requires a very
large size of the modeled systems and long simulation time
scales far beyond the accessible range of the current state-of-
the-art atomistic simulations.
Despite the quite versatile character of the MARTINI model,

it has a number of limitations that need to be taken into
consideration for specific applications.225 Due to the nature of
the coarse-graining of proteins and the definition of protein
topology (rather sophisticated side chain representation but a
very simplified backbone) changes in protein secondary
structures cannot be modeled. Moreover, accurate estimation
of an effective time scale of an MD simulation depends on the
particular system type and has to be considered with care.
The folding process and the structure and function of MPs

are influenced by surrounding membrane environments.553 The

MARTINI model has proved to be very useful for probing
protein−lipid interactions. The method was used for numerous
simulations that enabled realistic prediction of binding modes
in peptides and proteins to membranes, positioning proteins in
lipid bilayers554 as well as proper adaptation of membranes
around proteins.555−558 Sansom and co-workers used an
extended MARTINI model for positioning a large number of
proteins in lipid membranes.559 The procedure involved a series
of self-assembly MD simulations starting from systems
containing protein surrounded by a random mixture of lipid
and solvent molecules. In another study, multiscale simulations
of a 40 amino acid C-terminal fragment of amyloid precursor
protein (APP) in a DPC surfactant micelle and a POPC lipid
bilayer were conducted to elucidate the role of membrane
surface curvature in modulating the peptide structure.560

The lipids and other small molecules that make up the cell
membrane may selectively bind to proteins561 and may
modulate their function. The MARTINI model was applied
in numerous studies for the detection of these binding sites in
MPs. Long time scale coarse-grained MARTINI MD
simulations were used for the identification of the highly
conserved cholesterol recognition/interaction sequence motif
in the serotonin-1A receptor.562 Other studies illustrated the
binding mechanism of cholesteryl esters to cholesteryl ester
transfer protein (CETP),563 the interaction mode of hetero-
dimeric actin-capping protein (CP) with two signaling
phospholipids PA and PIP2,564 PIP2 binding to the inwardly
rectifying potassium (Kir) channel565 and enrichment of short
tail lipids near OmpA in mixtures of lipids with different tail
lengths.566 In yet another study, Arnarez and co-workers
conducted an extensive set of coarse-grained MD simulations
that allowed the identification of six binding sites of cardiolipin
on respiratory chain complex III (cytochrome bc1, CIII).567 A
similar approach was used for the investigation of DPPC and
DPPG lipid binding to the pore domain of potassium channels
KcsA and chimeric KcsAKv1.3 on the structural and functional
level.568

Studies of MP oligomerization are an important area of the
application of coarse-grained protein/membrane models. The
structural information on dimeric/oligomeric MPs is very
important for understanding their function and mechanism of
action. Sharma et al. used MARTINI to investigate the
structure and assembly process of TCRα-CD3ε-CD3δ trans-
membrane domains, both in membrane and in micelle
environments.569 The T-cell receptor (TCR) together with
the CD3 dimer is a key component in the primary function of
T cells. MARTINI modeling of the trimeric structure allowed
the identification of key interacting residues. In addition, a
revised picture for the association of transmembrane domains
of activating immune receptors in a membrane environment
was proposed. In another study a multiscale approach
employing coarse-grained MARTINI followed by all-atom
MD simulations allowed the identification of the homodimer
structure of two C-terminal fragments of amyloid precursor
protein (C99) in the POPC bilayer and the DPC micelle.570

Carpenter and co-workers performed coarse-grained MD
simulation of the tetramerization of four transmembrane
helices forming the transmembrane domain of influenza A
M2 channel protein.571 Comparison with the X-ray and NMR
structures of the M2 bundle suggests that the resulting model
may correspond to a closed state of the channel. Recently, the
MARTINI model was applied in numerous studies describing
the spontaneous self-assembly of GPCR (G-protein coupled

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00163
Chem. Rev. 2016, 116, 7898−7936

7919

http://dx.doi.org/10.1021/acs.chemrev.6b00163


receptor) dimers and oligomers in various types of cell
membranes. For example Periole et al. carried out multiple
self-assembly coarse-grained MD simulations of model
membranes containing up to 64 molecules of the visual
receptor rhodopsin over time scales reaching 100 μs.484 The
simulations allowed the identification of favored interaction
interfaces between two receptors involving helices 1/8, 4/5,
and 5. Furthermore, preferential interaction modes were
characterized in terms of the potential of mean force (PMF)
expressed as a function of interfacial distance between two
receptors. A plausible picture describing the supramolecular
organization of a row of dimers was also presented. In another
study, Provasi and co-workers conducted extensive coarse-
grained MD simulation to investigate preferred dimer interfaces
of three opioid receptor subtypes: δ, κ and μ. They also
addressed the possible role of interfacial lipids in modulating
the rate of receptor association.572 Coarse-grained MD
simulations using the MARTINI model were also applied to
assess the stability of two different dimer interfaces for β1 and
β2 adrenergic receptors573 and to explore the functional role of
cholesterol concentration and its involvement in receptor
organization.480 These applications show that MARTINI,
especially when combined with MD refinement, is a powerful
engine for studying complex biomembrane systems.
As well as the MARTINI model or its numerous extensions,

a wide range of other models have been proposed for MP
simulation and modeling.284,545,574−576 Several different coarse-
grained models applying Monte Carlo simulation were used for
studying the insertion of peptides into membranes577−580 or
proper description of protein interactions with lipid
bilayers.308,581 Another coarse-grained model developed by
Warshel and co-workers was applied to simulate the activation
process of the Kv1.2 channel.582,583 The method was also used
to analyze the energetics of translocon-assisted insertion of
charged helical peptides into the membrane.584 Recently, Feig
and co-workers presented an extension of their PRIMO coarse-
grained force field onto MPs.215 The models were positively
validated by comparing amino acid insertion free energy
profiles with MD simulations of MPs and membrane-
interacting peptides. A versatile method for modeling
membrane proteins is also available in the RosettaMP
framework.585 RosettaMP allows the prediction of free energy
changes upon mutation, high-resolution structural refinement,
protein−protein docking and assembly of symmetric protein
complexes in the membrane environment.

4.6. Integrative Modeling

Structures of large biomolecular systems are more and more
often determined by integrative modeling techniques that use a
combination of experimental data from various sources and
different theoretical methods.49−53 Integrative modeling
approaches are also expected to provide not only static
structures but also the view of conformational changes on
assembly.50,51 In comparison with the classical modeling tools
of structural biology, integrative models are more complex in
many aspects.50,586 One of them is a multiscale representation
requiring specific integration.92,93 For example, the same system
fragments can be represented on different levels of structural
detail, and different fragments of the system can be described in
different representations. Such a multiscale description can be
transformed to a set of spatial restraints and provides an input
to hybrid coarse-grained/all-atom methods, which are expected
to provide efficient sampling and scoring.

Computational methods using coarse-grained models have
already shown a great promise for a better description of
protein structures, or their complexes, when combined with
experimental data from NMR,263,587−590 cryo-EM,483,590−596 X-
ray597,598 or SAXS.589,599−601 In particular, recent combinations
of the top performing multiscale structure prediction platforms,
Rosetta and I-TASSER, with experimental measurements
resulted in spectacular prediction results. For example, the
refinement of protein NMR structures using Rosetta with
experimental NMR restraints yielded more accurate structures
than corresponding X-ray crystal structures.263 Another
interesting example is the performance of the NMR-I-TASSER
method (an adaptation of the I-TASSER platform) in the
recent critical assessment of automated structure determination
of proteins from NMR Data (CASP-NMR) experiment.590 It
was shown that even using only the coarse-grained conforma-
tional search, NMR-I-TASSER can consistently produce good
resolution models (<2 Å). This makes NMR-I-TASSER very
promising for applications in combination with the classical all-
atom refinement tools, in particular for the efficient structure
determination of large proteins.

5. CONCLUDING REMARKS
Most biomolecular systems, including proteins and their
complexes, are too complicated to be efficiently handled by
classical molecular modeling tools. This is caused not only by
the large molecular size but also by the time-scale of important
processes and specific interaction patterns. The coarse-grained
modeling approaches outlined in this review seem to be the
computational methods of choice in solving many fundamental
problems of theoretical and practical molecular biology and
medicinal chemistry. When using or designing coarse-grained-
based modeling methods, it is necessary to consider several
important choices, such as the resolution level and specific
design of coarse-grained representation, model of interactions,
sampling schemes, and finally the efficient use of experimental
(and theoretical) data and effective connection of coarse-
grained computations with atom level simulations.
When designing coarse-grained modeling methods, the

representation of atomistic structures on a coarse-grained
level requires precise definition. The choice of representation
determines to a large extent the possible options of force field
and sampling, i.e., the compromise between accuracy and
computational efficiency.87,407 The smaller the number of
explicitly treated united atoms (or pseudoatoms) representing
fragments of protein chains, the faster simulation, and the lower
accuracy. Very efficient models based on three/four united
atoms per amino acid residue accelerate simulations by 3−4
orders of magnitude in comparison with classical all-atom MD
simulations.211,271 Nevertheless, it is useful to develop even
more simplified models dedicated to large protein systems with
r e a l i s t i c c onne c t i o n w i t h a l l - a t om r e s o l u t i on
schemes.28,225,314,407 On the other hand, some applications
require a fine level of coarse-graining.105,602 For example, the
coarse-grained modeling of solvent and protein interaction
effects with small molecules is very challenging603−605 and it
very likely will be an important subject of future research.
Dedicated hardware and specific programming may provide
additional speedup factors.606−608

Improvement of interaction models is of primary importance
in the protein modeling field. Current force fields are not
accurate enough, and it is possible to obtain different results
using different force fields, even the all-atom ones.21,435−437
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The most straightforward, although definitely not trivial,
interaction schemes for coarse-grained models could be derived
from the atom-level force fields of classical molecular
mechanics.28,30,609 It is not easy to ensure “transferability” of
such “physics-based” interaction schemes between different
systems or different environments, although significant progress
has been achieved recently.30,610 Alternatively to the “physics-
based” approach it is possible to derive statistical “knowledge-
based” force fields that generalize coarse-grained structural
regularities seen in the known protein structures. In the past
few years modeling schemes based on statistical force fields
have proven to be most successful in protein structure
prediction (I-TASSER,48 Rosetta,104 and CABS205). These
methods use various combinations of statistical potentials in
which sequence specific interactions are based on the statistical
analysis of structural data, sometimes limited to sequentially
analogous or homologous proteins. Surprisingly, models
employing “knowledge-based” interactions derived from
regularities observed in static experimental structures seem to
provide quite realistic pictures of protein folding pathways and
protein dynamics. Nevertheless, the problem of transferability,
or rather the balance between specificity and accuracy of
statistical potentials (for example between force fields for
globular proteins versus force fields for membrane proteins, or
for protein monomers and for protein−protein complexes, etc.)
needs further studies. Finally, any of the interaction schemes of
coarse-grained models could be combined with “restrains”
derived from various, often fragmentary, experimental data,
enabling their deeper interpretation.
Various sampling schemes, including Molecular Dynamics,

Monte Carlo, or their combinations can be applied to coarse-
grained models.181−185 Coarse-grained representation enables
(and in some sense enforces) significantly smoother energy
curves for interaction schemes. Therefore, the apparent time
step in coarse-grained MD269 could be broader than required
for atom-level simulations. This provides additional speedup of
coarse-grained simulations. Very efficient Monte Carlo
sampling schemes could also be used, and these are the natural
choice for discrete models. Properly designed MC algorithms
based on local conformational modifications can provide quite
realistic pictures of long time dynamics. The replica-exchange
and other multicopy schemes of MD (or MC) simulations
could also be very useful in studies of coarse-grained models of
biomacromolecules.183,184 Recent progress in sampling has also
brought another “Big Data” challenge: how to merge and
analyze the massive amounts of simulation data.199−201

The multiscale or integrative strategies of molecular
modeling have been rapidly developing in the last years. The
efficient use of coarse-grained models usually requires rigorous
reconstruction of the atom-level representation. This is not a
trivial task, and satisfactory solutions exist only for well-studied
moderate resolution coarse-grained models.101,102,360 Fast
methods of dependable transitions between various levels of
representation are needed, and probably require designing
specific statistical potentials to ensure not only realistic spatial
fidelity but also a reasonable switch between dynamics profiles.
The existing coarse-grained modeling tools dedicated to
particular types of macromolecules (e.g., lipids,228,280

DNA,475,611 RNA,612,613 or carbohydrates614,615) require
integration, or better integration, with coarse-grained protein
models and within well-defined multiscale modeling schemes.
Over the last decades, we have learned about the power of

coarse-grained molecular modeling of proteins and their

complexes,19−32 in particular when combined with higher
resolution models.25,37−40 The application of coarse-grained
modeling in combination with all-atom refinement tools,
bioinformatics and fragmentary experimental data already
plays a crucial role in protein structure prediction.48,104,379

Similar progress is now being made in predicting the structure
of protein complexes.52,55 The efficient multiscale modeling of
long time biomolecular dynamics50,51 is the next challenge. A
growing number of real-time measurements of how cell
components (proteins, nucleic acids, lipids, and others)
perform their functions is expected to be a further stimulus
to construct new coarse-grained modeling tools, including
whole-cell models.54,55,423
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(121) Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving effective
mesoscale potentials from atomistic simulations. J. Comput. Chem.
2003, 24, 1624−1636.
(122) Moore, T. C.; Iacovella, C. R.; McCabe, C. Derivation of
coarse-grained potentials via multistate iterative Boltzmann inversion.
J. Chem. Phys. 2014, 140, 224104.
(123) Lyubartsev, A.; Laaksonen, A. Calculation of effective
interaction potentials from radial distribution functions: A reverse
Monte Carlo approach. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.
Interdiscip. Top. 1995, 52, 3730−3737.
(124) Lyubartsev, A.; Mirzoev, A.; Chen, L.; Laaksonen, A.
Systematic coarse-graining of molecular models by the Newton
inversion method. Faraday Discuss. 2010, 144, 4310.1039/B901511F
(125) Izvekov, S.; Voth, G. A Multiscale Coarse-Graining Method for
Biomolecular Systems. J. Phys. Chem. B 2005, 109, 2469−2473.
(126) Cho, H.; Chu, J.-W. Inversion of radial distribution functions
to pair forces by solving the Yvon−Born−Green equation iteratively. J.
Chem. Phys. 2009, 131, 134107.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00163
Chem. Rev. 2016, 116, 7898−7936

7924

http://dx.doi.org/10.1021/acs.chemrev.6b00163
http://pubs.acs.org/action/showLinks?coi=1%3ACAS%3A528%3ADyaK1cXlsFOht7o%253D&citationId=p_235_1
http://pubs.acs.org/action/showLinks?pmid=15264259&crossref=10.1002%2Fjcc.20090&coi=1%3ACAS%3A528%3ADC%252BD2cXmvVOhtr4%253D&citationId=p_277_1
http://pubs.acs.org/action/showLinks?pmid=15264259&crossref=10.1002%2Fjcc.20090&coi=1%3ACAS%3A528%3ADC%252BD2cXmvVOhtr4%253D&citationId=p_277_1
http://pubs.acs.org/action/showLinks?pmid=26583681&crossref=10.1039%2FC5MB00612K&coi=1%3ACAS%3A528%3ADC%252BC2MXhslyqsLnP&citationId=p_232_1
http://pubs.acs.org/action/showLinks?pmid=24929371&crossref=10.1063%2F1.4880555&coi=1%3ACAS%3A528%3ADC%252BC2cXpsFKmt7g%253D&citationId=p_312_1
http://pubs.acs.org/action/showLinks?pmid=25149274&crossref=10.1016%2Fj.bbagen.2014.08.004&coi=1%3ACAS%3A528%3ADC%252BC2cXhsVakt7fO&citationId=p_274_1
http://pubs.acs.org/action/showLinks?crossref=10.1209%2F0295-5075%2F26%2F8%2F005&coi=1%3ACAS%3A528%3ADyaK2cXks1KisLc%253D&citationId=p_302_1
http://pubs.acs.org/action/showLinks?pmid=16524716&crossref=10.1016%2Fj.sbi.2006.02.004&coi=1%3ACAS%3A528%3ADC%252BD28Xjs1Grs7w%253D&citationId=p_271_1
http://pubs.acs.org/action/showLinks?pmid=15268120&crossref=10.1063%2F1.1739396&coi=1%3ACAS%3A528%3ADC%252BD2cXksVCqt7w%253D&citationId=p_299_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fct300646g&coi=1%3ACAS%3A528%3ADC%252BC38Xhs1OnsrbO&citationId=p_296_1
http://pubs.acs.org/action/showLinks?pmid=15072433&crossref=10.1023%2FB%3AJCAM.0000017486.83645.a0&coi=1%3ACAS%3A280%3ADC%252BD2c7nslyruw%253D%253D&citationId=p_244_1
http://pubs.acs.org/action/showLinks?pmid=15072433&crossref=10.1023%2FB%3AJCAM.0000017486.83645.a0&coi=1%3ACAS%3A280%3ADC%252BD2c7nslyruw%253D%253D&citationId=p_244_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp044629q&coi=1%3ACAS%3A528%3ADC%252BD2MXmtVSntQ%253D%253D&citationId=p_317_1
http://pubs.acs.org/action/showLinks?pmid=21533652&crossref=10.1007%2Fs00249-011-0700-9&coi=1%3ACAS%3A528%3ADC%252BC3MXnsVCgs74%253D&citationId=p_293_1
http://pubs.acs.org/action/showLinks?pmid=10585918&crossref=10.1016%2FS0006-3495%2899%2977127-4&coi=1%3ACAS%3A528%3ADyaK1MXotVGhs7g%253D&citationId=p_241_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp0727190&coi=1%3ACAS%3A528%3ADC%252BD2sXns1CktrY%253D&citationId=p_283_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp0727190&coi=1%3ACAS%3A528%3ADC%252BD2sXns1CktrY%253D&citationId=p_283_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp410344g&coi=1%3ACAS%3A528%3ADC%252BC3sXhvFCjur%252FK&citationId=p_290_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp410344g&coi=1%3ACAS%3A528%3ADC%252BC3sXhvFCjur%252FK&citationId=p_290_1
http://pubs.acs.org/action/showLinks?pmid=22277168&crossref=10.1016%2Fj.sbi.2012.01.003&coi=1%3ACAS%3A528%3ADC%252BC38XltVamtbY%253D&citationId=p_217_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2FS0301-4622%2802%2900285-5&citationId=p_259_1
http://pubs.acs.org/action/showLinks?pmid=12142455&crossref=10.1110%2Fps.0200702&coi=1%3ACAS%3A528%3ADC%252BD38XlslKntrc%253D&citationId=p_280_1
http://pubs.acs.org/action/showLinks?crossref=10.1002%2Fjcc.540141009&coi=1%3ACAS%3A528%3ADyaK2cXjvFyq&citationId=p_207_1
http://pubs.acs.org/action/showLinks?pmid=22098752&crossref=10.1016%2Fj.bpj.2011.10.024&coi=1%3ACAS%3A528%3ADC%252BC3MXhsV2msb7E&citationId=p_256_1
http://pubs.acs.org/action/showLinks?pmid=7783205&crossref=10.1006%2Fjmbi.1995.0311&coi=1%3ACAS%3A528%3ADyaK2MXmtlWrs7Y%253D&citationId=p_204_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp301720w&coi=1%3ACAS%3A528%3ADC%252BC38Xlt1aqsr8%253D&citationId=p_253_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fct500834t&coi=1%3ACAS%3A528%3ADC%252BC2cXhvFKqtbbN&citationId=p_229_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fct500834t&coi=1%3ACAS%3A528%3ADC%252BC2cXhvFKqtbbN&citationId=p_229_1
http://pubs.acs.org/action/showLinks?pmid=11959918&crossref=10.1073%2Fpnas.092135699&coi=1%3ACAS%3A528%3ADC%252BD38XjslWgurg%253D&citationId=p_250_1
http://pubs.acs.org/action/showLinks?pmid=12926006&crossref=10.1002%2Fjcc.10307&coi=1%3ACAS%3A528%3ADC%252BD3sXntFentL4%253D&citationId=p_309_1
http://pubs.acs.org/action/showLinks?crossref=10.1039%2FB901511F&citationId=p_316_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fct4000444&coi=1%3ACAS%3A528%3ADC%252BC3sXktlyltLc%253D&citationId=p_226_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2F0375-9601%2874%2990847-0&citationId=p_306_1
http://pubs.acs.org/action/showLinks?pmid=9963851&crossref=10.1103%2FPhysRevE.52.3730&coi=1%3ACAS%3A528%3ADyaK2MXovVSgsrw%253D&citationId=p_313_1
http://pubs.acs.org/action/showLinks?pmid=9963851&crossref=10.1103%2FPhysRevE.52.3730&coi=1%3ACAS%3A528%3ADyaK2MXovVSgsrw%253D&citationId=p_313_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fct400230y&coi=1%3ACAS%3A528%3ADC%252BC3sXhtVWht7rM&citationId=p_268_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fct400230y&coi=1%3ACAS%3A528%3ADC%252BC3sXhtVWht7rM&citationId=p_268_1
http://pubs.acs.org/action/showLinks?pmid=19814543&crossref=10.1063%2F1.3238547&coi=1%3ACAS%3A528%3ADC%252BD1MXht1CnsL7P&citationId=p_320_1
http://pubs.acs.org/action/showLinks?pmid=19814543&crossref=10.1063%2F1.3238547&coi=1%3ACAS%3A528%3ADC%252BD1MXht1CnsL7P&citationId=p_320_1
http://pubs.acs.org/action/showLinks?pmid=21339588&crossref=10.1088%2F0953-8984%2F22%2F45%2F453101&coi=1%3ACAS%3A528%3ADC%252BC3cXhsFartL3I&citationId=p_216_1
http://pubs.acs.org/action/showLinks?pmid=21339588&crossref=10.1088%2F0953-8984%2F22%2F45%2F453101&coi=1%3ACAS%3A528%3ADC%252BC3cXhsFartL3I&citationId=p_216_1
http://pubs.acs.org/action/showLinks?pmid=18592200&crossref=10.1007%2F978-1-59745-398-1_32&coi=1%3ACAS%3A528%3ADC%252BD1cXhtFSgsLjF&citationId=p_223_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevA.28.3599&coi=1%3ACAS%3A528%3ADyaL2cXis1amsg%253D%253D&citationId=p_303_1
http://pubs.acs.org/action/showLinks?pmid=22678152&crossref=10.1039%2Fc2cp40934h&coi=1%3ACAS%3A528%3ADC%252BC38Xht1Cis7vO&citationId=p_213_1
http://pubs.acs.org/action/showLinks?pmid=22678152&crossref=10.1039%2Fc2cp40934h&coi=1%3ACAS%3A528%3ADC%252BC38Xht1Cis7vO&citationId=p_213_1
http://pubs.acs.org/action/showLinks?pmid=23755997&crossref=10.1016%2Fj.tibtech.2013.05.001&coi=1%3ACAS%3A528%3ADC%252BC3sXovVClu74%253D&citationId=p_220_1
http://pubs.acs.org/action/showLinks?pmid=18410248&crossref=10.1146%2Fannurev.biochem.77.062906.171838&coi=1%3ACAS%3A528%3ADC%252BD1cXos1ekurw%253D&citationId=p_262_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fj100069a028&coi=1%3ACAS%3A528%3ADyaK2cXis1Ght7w%253D&citationId=p_203_1
http://pubs.acs.org/action/showLinks?pmid=19923431&crossref=10.1073%2Fpnas.0906408106&coi=1%3ACAS%3A528%3ADC%252BC3cXjvFOiu7o%253D&citationId=p_210_1
http://pubs.acs.org/action/showLinks?coi=1%3ACAS%3A528%3ADC%252BD3MXkvVaktbw%253D&citationId=p_238_1
http://pubs.acs.org/action/showLinks?crossref=10.1002%2Fjcc.540040211&coi=1%3ACAS%3A528%3ADyaL3sXit1aiu7w%253D&citationId=p_287_1
http://pubs.acs.org/action/showLinks?crossref=10.1002%2Fjcc.540040211&coi=1%3ACAS%3A528%3ADyaL3sXit1aiu7w%253D&citationId=p_287_1


(127) Lu, L.; Dama, J.; Voth, G. Fitting coarse-grained distribution
functions through an iterative force-matching method. J. Chem. Phys.
2013, 139, 121906.
(128) Mullinax, J. W.; Noid, W. G. A Generalized-Yvon−Born−
Green Theory for Determining Coarse-Grained Interaction Poten-
tials†. J. Phys. Chem. C 2010, 114, 5661−5674.
(129) Shell, S. The relative entropy is fundamental to multiscale and
inverse thermodynamic problems. J. Chem. Phys. 2008, 129, 144108.
(130) Bilionis, I.; Zabaras, N. A stochastic optimization approach to
coarse-graining using a relative-entropy framework. J. Chem. Phys.
2013, 138, 044313.
(131) Chaimovich, A.; Shell, S. Coarse-graining errors and numerical
optimization using a relative entropy framework. J. Chem. Phys. 2011,
134, 094112.
(132) Chaimovich, A.; Shell, S. Relative entropy as a universal metric
for multiscale errors. Phys. Rev. E 2010, 81, 10.1103/Phys-
RevE.81.060104
(133) Espanol, P.; Zuniga, I. Obtaining fully dynamic coarse-grained
models from MD. Phys. Chem. Chem. Phys. 2011, 13, 10538−10545.
(134) Murtola, T.; Karttunen, M.; Vattulainen, I. Systematic coarse
graining from structure using internal states: application to
phospholipid/cholesterol bilayer. J. Chem. Phys. 2009, 131,
05510110.1063/1.3167405
(135) Brini, E.; van der Vegt, N. F. Chemically transferable coarse-
grained potentials from conditional reversible work calculations. J.
Chem. Phys. 2012, 137, 15411310.1063/1.4758936
(136) Deichmann, G.; Marcon, V.; van der Vegt, N. Bottom-up
derivation of conservative and dissipative interactions for coarse-
grained molecular liquids with the conditional reversible work method.
J. Chem. Phys. 2014, 141, 224109.
(137) Hadley, K.; McCabe, C. Coarse-Grained Molecular Models of
Water: A Review. Mol. Simul. 2012, 38, 671−681.
(138) Tanaka, S.; Scheraga, H. A. Medium- and long-range
interaction parameters between amino acids for predicting three-
dimensional structures of proteins. Macromolecules 1976, 9, 945−950.
(139) Samudrala, R.; Moult, J. An all-atom distance-dependent
conditional probability discriminatory function for protein structure
prediction. J. Mol. Biol. 1998, 275, 895−916.
(140) Simons, K. T.; Ruczinski, I.; Kooperberg, C.; Fox, B. A.;
Bystroff, C.; Baker, D. Improved recognition of native-like protein
structures using a combination of sequence-dependent and sequence-
independent features of proteins. Proteins: Struct., Funct., Genet. 1999,
34, 82−95.
(141) Xia, Y.; Levitt, M. Extracting knowledge-based energy
functions from protein structures by error rate minimization:
Comparison of methods using lattice model. J. Chem. Phys. 2000,
113, 9318−9330.
(142) Sippl, M. J. Boltzmann’s principle, knowledge-based mean
fields and protein folding. An approach to the computational
determination of protein structures. J. Comput.-Aided Mol. Des. 1993,
7, 473−501.
(143) Skolnick, J.; Kolinski, A.; Ortiz, A. Derivation of protein-
specific pair potentials based on weak sequence fragment similarity.
Proteins: Struct., Funct., Genet. 2000, 38, 3−16.
(144) Godzik, A.; Kolinski, A.; Skolnick, J. Are proteins ideal
mixtures of amino acids? Analysis of energy parameter sets. Protein Sci.
1995, 4, 2107−2117.
(145) Skolnick, J.; Jaroszewski, L.; Kolinski, A.; Godzik, A. Derivation
and testing of pair potentials for protein folding. When is the
quasichemical approximation correct? Protein Sci. 1997, 6, 676−688.
(146) Majek, P.; Elber, R. A coarse-grained potential for fold
recognition and molecular dynamics simulations of proteins. Proteins:
Struct., Funct., Genet. 2009, 76, 822−836.
(147) Zhou, Y.; Zhou, H.; Zhang, C.; Liu, S. What is a desirable
statistical energy function for proteins and how can it be obtained? Cell
Biochem. Biophys. 2006, 46, 165−174.
(148) Shen, M.-Y.; Sali, A. Statistical potential for assessment and
prediction of protein structures. Protein Sci. 2006, 15, 2507−2524.

(149) Yang, Y.; Zhou, Y. Specific interactions for ab initio folding of
protein terminal regions with secondary structures. Proteins: Struct.,
Funct., Genet. 2008, 72, 793−803.
(150) Zhou, H.; Skolnick, J. GOAP: a generalized orientation-
dependent, all-atom statistical potential for protein structure
prediction. Biophys. J. 2011, 101, 2043−2052.
(151) Park, J.; Saitou, K. ROTAS: a rotamer-dependent, atomic
statistical potential for assessment and prediction of protein structures.
BMC Bioinf. 2014, 15, 307.
(152) Gront, D.; Kolinski, A. A new approach to prediction of short-
range conformational propensities in proteins. Bioinformatics 2005, 21,
981−987.
(153) Amir, E.-A.; Kalisman, N.; Keasar, C. Differentiable, multi-
dimensional, knowledge-based energy terms for torsion angle
probabilities and propensities. Proteins: Struct., Funct., Genet. 2008,
72, 62−73.
(154) Levy-Moonshine, A.; Amir, E.-a.; Keasar, C. Enhancement of
beta-sheet assembly by cooperative hydrogen bonds potential.
Bioinformatics 2009, 25, 2639−2645.
(155) Liwo, A.; Arlukowicz, P.; Czaplewski, C.; Oldziej, S.; Pillardy,
J.; Scheraga, H. A. A method for optimizing potential-energy functions
by a hierarchical design of the potential-energy landscape: application
to the UNRES force field. Proc. Natl. Acad. Sci. U. S. A. 2002, 99,
1937−1942.
(156) Mirny, L. A.; Shakhnovich, E. I. How to Derive a Protein
Folding Potential? A New Approach to an Old Problem. J. Mol. Biol.
1996, 264, 1164−1179.
(157) Maiorov, V. N.; Grippen, G. M. Contact Potential That
Recognizes the Correct Folding of Globular-Proteins. J. Mol. Biol.
1992, 227, 876−888.
(158) Chiu, T.-L.; Goldstein, R. A. Optimizing energy potentials for
success in protein tertiary structure prediction. Folding Des. 1998, 3,
223−228.
(159) Hao, M.-H.; Scheraga, H. A. Optimizing Potential Functions
for Protein Folding. J. Phys. Chem. 1996, 100, 14540−14548.
(160) Sippl, M. J. Calculation of conformational ensembles from
potentials of mean force. An approach to the knowledge-based
prediction of local structures in globular proteins. J. Mol. Biol. 1990,
213, 859−883.
(161) Hamelryck, T.; Borg, M.; Paluszewski, M.; Paulsen, J.; Frellsen,
J.; Andreetta, C.; Boomsma, W.; Bottaro, S.; Ferkinghoff-Borg, J.
Potentials of Mean Force for Protein Structure Prediction Vindicated,
Formalized and Generalized. PLoS One 2010, 5, e13714.
(162) Gniewek, P.; Leelananda, S. P.; Kolinski, A.; Jernigan, R. L.;
Kloczkowski, A. Multibody coarse-grained potentials for native
structure recognition and quality assessment of protein models.
Proteins: Struct., Funct., Genet. 2011, 79, 1923−1929.
(163) Elhefnawy, W.; Chen, L.; Han, Y.; Li, Y. ICOSA: A Distance-
Dependent, Orientation-Specific Coarse-Grained Contact Potential for
Protein Structure Modeling. J. Mol. Biol. 2015, 427, 2562−2576.
(164) Sankar, K.; Liu, J.; Wang, Y.; Jernigan, R. L. Distributions of
experimental protein structures on coarse-grained free energy
landscapes. J. Chem. Phys. 2015, 143, 243153.
(165) Zaborowski, B.; Jagieła, D.; Czaplewski, C.; Hałabis, A.;
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