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ABSTRACT: The CABS coarse-grained model is a well-
established tool for modeling globular proteins (predicting
their structure, dynamics, and interactions). Here we introduce
an extension of the CABS representation and force field (CABS-
membrane) to the modeling of the effect of the biological
membrane environment on the structure of membrane proteins.
We validate the CABS-membrane model in folding simulations
of 10 short helical membrane proteins not using any knowledge about their structure. The simulations start from random protein
conformations placed outside the membrane environment and allow for full flexibility of the modeled proteins during their
spontaneous insertion into the membrane. In the resulting trajectories, we have found models close to the experimental
membrane structures. We also attempted to select the correctly folded models using simple filtering followed by structural
clustering combined with reconstruction to the all-atom representation and all-atom scoring. The CABS-membrane model is a
promising approach for further development toward modeling of large protein−membrane systems.

■ INTRODUCTION

Membrane proteins (MPs) are important components of
molecular machineries of life, and they are estimated to be
encoded by up to 30% of the human genome.1 MPs are
essential for a number of key biological functions, such as signal
transduction, transport of solutes, and cell communication.
Many MPs are involved in human diseases; they are targets for
over 50% marketed drugs2,3 and also for numerous ongoing
drug discovery projects. Despite significant efforts from both
academia and industry, MP structures are vastly under-
represented in the Protein Data Bank (MPs constitute only
1−2% of known structures).4 This is because conventional
structure determination techniques, such as X-ray and NMR,
have serious application limitations for MPs, including protein
sample preparation and other issues.5 The poor structure
understanding is paired with very limited comprehension of
their structural dynamics and thus the functions they perform
on the molecular level.
Since experimental structure determination of MPs is a

significant challenge, various computational techniques have
been developed to predict structural features of MPs; a
comprehensive review of them is provided in ref 4. The other,
and not less important, challenge is to simulate MP dynamics,
and the most acknowledged approach is all-atom molecular
dynamics (MD). Unfortunately, application of all-atom MD is
limited to short simulation time scales. In practice, unguided
all-atom MD simulations are restricted to small conformational
changes or small protein systems.6−8 A substantial computa-
tional speed-up may be achieved using coarse-grained
modeling,9 and a wide range of coarse-grained models have

been proposed for simulations of MPs in the membrane
environment.9−18 The most popular one is definitely the
MARTINI model14 (originally developed for lipids19,20 and
subsequently extended to model proteins14). Although
MARTINI has found a broad range of applications, it still has
a number of limitations.21 An important one with regard to
modeling of protein conformational changes is that secondary
structure formation or disruption cannot be modeled21 (user-
defined secondary structure has to be maintained during the
simulation using secondary structure constraints). This is a
result of the specifics of the MARTINI coarse-grained
representation, which has rather sophisticated side-chain
representation but a very simple backbone. For these reasons,
implementation of different models of membrane proteins that
would enable changes of the entire structure could be
important for theoretical studies of protein folding induced
by insertion into cell membranes.
In this work, we describe a simple modification of the CABS

coarse-grained force field by a simple model of the biological
membrane. To date, the CABS model has been extensively used
in various modeling tasks of globular proteins and outer
membrane fragments of membrane proteins (see the CABS
description in Materials and Methods). As presented in recent
dynamics studies of globular proteins, the CABS model allows
us to model protein conformational changes (including
secondary structure) during folding22−27 or folding and binding
of a disordered protein.28 We tested the extended CABS
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version in simulations of short α-helical MPs (it is estimated
that about 80% of MPs are α-helical bundles1). These tests
showed that after some modification of hydrophobic
interactions between side chains, the model can be effectively
used for simulations of conformational transitions during
protein insertion into membranes.

■ MATERIALS AND METHODS

The CABS Model. CABS is a high-resolution coarse-grained
model of protein structure and dynamics. A detailed description
of the model, including its representation, force field, and
sampling scheme, was provided in 2004,29 while its main ideas
and several applications have been summarized and compared
with other coarse-grained approaches in a recent review.9 Here
we provide an overview of the model necessary for the
definition of its extension to coarse-grained MPs. In the CABS
model, amino acid residues are represented by up to four
pseudoatoms: Cα (CA), Cβ (B), the center of mass of the
remaining portion of a side chain (S), and the center of the
virtual Cα−Cα bond (Figure 1a,b). Available positions of the Cα

united atoms are restricted to selected points of an underlying
cubic lattice. Therefore, small fluctuations of the distance
between successive Cα atoms are allowed. The locations of the
side-chain united atoms depend on the main-chain geometry
and are restricted to the positions representing the most

populated conformations observed in known protein structures;
the locations of the side chains are discretized and stored in
large tables. The resulting resolution level of the CABS
representation is typical of other efficient coarse-grained
protein modeling methods, including TOUCHSTONE,30

UNRES,31 and I-TASSER.32 Such coarse-grained models
seem to be a reasonable compromise between speed-up of
the simulations and fast realistic reconstruction of the atom-
level representation of the modeled structures.
In the CABS model, the interactions are described by

knowledge-based statistical potentials derived from structural
regularities seen in the known structures of globular proteins.
These include the following: a set of conformational
propensities of the main chain mimicking the polypeptide
flexibility and secondary structure propensities; the excluded
volume of the united atoms taken from the averaged statistics
for the protein database; a model of main-chain hydrogen
bonds modeled as strong directional contact interactions with
weak secondary structure (statistical predictions for specific
sequences) biases; and amino acid-dependent interactions
between side chains. Interactions between the side chains are
the most important sequence-dependent forces in the CABS
model. These pairwise contact potentials are context-dependent
and take into consideration the identity, size, and mutual
orientation of the interacting pseudoatoms (the same concept
is used in related modeling schemes,30,32 and a detailed
description of the CABS force field can be found else-
where29,33). It should be pointed out that the knowledge-based
statistical force field of the CABS protein model was derived for
globular proteins and that the solvent is treated in strictly
implicit fashion, assuming the averaged folding temperature as a
reference state. In the CABS model, temperature is the
parameter that controls the acceptance ratio for new
conformations using the Monte Carlo (MC) method.
Consequently, the simulation temperature is a dimensionless
parameter that is proportional to the real temperature
increments. The parameters of the CABS force field are
available on our Web site (http://biocomp.chem.uw.edu.pl/
tools).
The conformational space of the CABS model is sampled by

a properly designed Monte Carlo scheme. A long series of small
local conformational transitions (within the asymmetric
Metropolis scheme) mimics the long-time dynamics of the
modeled proteins. The sampling process is computationally
very efficient, not only because of the coarse-grained
representation of protein chains but also thanks to discrete
(high-coordination lattice) positions of the Cα pseudoatoms. As
Cα chains provide reference coordinates for the other
pseudoatoms, the underlying lattice enables efficient storage
of local moves and interactions. In this way, CABS Monte
Carlo dynamics simulations are about an order of magnitude
faster than otherwise equivalent continuous-space models.
The CABS model has proven to be an efficient tool for

protein structure prediction, including de novo and compara-
tive modeling schemes,34,35 studies of protein folding
mechanisms,22−27 protein flexibility,36−38 and modeling of
protein−peptide interactions: binding mechanisms28 and
flexible protein−peptide docking.39,40 CABS models have also
been recently used in modeling nonmembrane fragments of
MPs to predict the structure of extracellular loops of GPCRs35

and the structure and functional motions of the outer
membrane transporter FecA.41 In these studies, similar to
MARTINI membrane protein modeling schemes,42 the

Figure 1. Overview of the CABS-membrane model. (a) Comparison
of the CABS coarse-grained representation with its all-atom counter-
part. (b) CABS representation details and an example move. (c) CABS
energy term for protein residue transfer into the membrane based on
the hydrophobicity of a residue (EKD) as a function of the distance
from the bilayer midplane (z).
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behavior of transmembrane fragments was controlled by
distance restraints derived from known three-dimensional
structures. In this paper, we present an extension of the
CABS modeling scheme to possible de novo simulation of the
entire membrane insertion process without any knowledge
about the modeled in-membrane structures.
Extension of CABS to Membrane Proteins. The CABS

model is extended to the simulation of membrane proteins by
the addition of a new force field term mimicking the membrane
environment, defined as

= − ×E hKDKD amino acid

where KDamino acid is the hydrophobicity value of a given amino
acid based on the Kyte−Doolittle scale43 and h is the scaling
factor (Figure 1c). The EKD term applies within the main
membrane layer (hydrophobic core), defined on the z axis in
the range of −15 Å to 15 Å, which corresponds to the average
size of the hydrophobic interior of a biological membrane.44

Additionally, on both sides of the main layer surface, interface
layers are defined. The layers correspond to transition regions
with a thickness of 6 Å in which the environment changes from
90% nonpolar to 90% polar.45 In these regions, EKD is scaled
linearly by a factor corresponding to the distance to the main
layer. The obtained hydrophobic profile (Figure 1c) is
complementary to most previous studies using exponential
functions to describe the steepness of the transition.46,47

The original CABS force field was derived for globular
proteins, and the new force field term EKD provides a correction
for intraprotein residue−residue interactions and accounts for
the implicit membrane environment. Several simple interaction
schemes mimicking the membrane environment have been
tested. We found during these tests that a slight increase in
attractive interaction between the side chains, as defined by the
KD hydrophobicity scale,43 is efficient to enforce membrane
insertion of hydrophobic protein fragments. Other hydro-
phobicity scales could be considered, but when the derivation
of the KD scale is taken into account,43 it appears to be a
reasonable first choice. Hydrophobicity scale corrections to the
CABS force field in the membrane environment mimic the
absence of implicitly treated polar solvent (water). A perhaps
more straightforward way to introduce the membrane environ-
ment into CABS would be to derive a within-membrane
statistical force field for amino acids similar to the CABS force
field for globular proteins. Despite the relatively small number
of available high-resolution MP structures, efforts toward the
development of statistical potentials for MPs have already
shown promising results.48,49

Protein Data Set and Simulation Settings. To test the
de novo modeling capabilities of the CABS-membrane model,
we chose 10 short membrane proteins with lengths of 35 to 81
residues. Larger MPs were not considered in the data set
because they exceed the possibilities of purely de novo protein
structure prediction, as discussed in the recent review.9 The
protein data set comprised the following proteins (PDB IDs
and numbers of amino acids are given): 1IIJ (35 aa), 1N7L (53
aa), 1WAZ (46 aa), 1WU0 (72 aa), 2KSD (75 aa), 2LOP (75
aa), 1VRY (76 aa), 1A91 (79 aa), 2K9P (80 aa), and 2MOZ
(81 aa). These proteins represent single-pass membrane helical
proteins or multiple (two or three)-helix bundles and generally
have low sequence identity with each other (see Tables S1 and
S2 in the Supporting Information).
The simulation input included the protein sequence and

secondary structure assignments (in one-letter code). For the

sake of simplicity, we used native assignments since the
predicted secondary structure is quite accurate for membrane
proteins and the exact size of the predicted helical fragment is
not important for the CABS model. This is the case because the
structure input in the CABS model provides a weak bias toward
the local chain geometry and does not preclude different
secondary structure arrangements (the role of secondary
structure in the CABS force field has recently been discussed
in detail33). Interestingly, as demonstrated in protein
folding23,50 and folding and binding28 studies, the CABS
model usually provides correct predictions of the stability of
secondary structure elements during the folding process.
For each protein, we performed 20 independent CABS-

membrane simulations having different combinations of
temperature, T, and scaling factor, h. The following values
were tested: T = 1.3, 1.5, 1.7, 1.9, 2.1 and h = 0.5, 1.0, 1.5, 2.0.
Initial simulation analysis showed that extreme values of T and
h gave clearly worse results in terms of the number of native-
like conformations in simulation trajectories. Therefore, for
further analysis we considered only six independent simu-
lations: those with T = 1.5, 1.7, 1.9 and h = 1.0, 1.5.
Additionally, for the same temperature set (T = 1.5, 1.7, 1.9),
we ran folding simulations without the membrane region (h =
0). Cumulative comparison of the simulations with and without
the membrane (Figure 2) showed that the introduced
membrane environment provides the driving force for folding
of the MPs.
Each simulation started from an extended protein con-

formation placed outside the membrane environment. During
the simulations, the protein conformations were allowed to be
fully flexible. Each simulation consisted of 10 million MC
CABS microcycles (on average, each microcycle corresponded
to a few attempts of protein chain micromodifications per

Figure 2. Histograms of RMSD values for simulations with and
without the membrane. Three kinds of histograms are shown: for the
CABS simulations without the membrane (colored in red), for CABS-
membrane simulations (colored in green), and for models selected in
the initial filtering step from CABS-membrane simulations (colored in
black; a description of the initial filtering step is provided in the
Results). The histograms show cumulative distributions of the relative
frequency of RMSD values for all of the test set proteins, temperatures
(T = 1.5, 1.7, 1.9) and scaling factors (h = 1.0, 1.5 for the CABS-
membrane simulations and h = 0 for the simulations without the
membrane). In the presented statistics, only the second half of each
simulation trajectory was taken into account. Individual distributions
for each protein from the test set are presented in Figure S1.
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single protein residue). Simulation trajectories were recorded
with an interval of 10 000 MC microcycles, and 1000 snapshots
were recorded in each case. A single simulation took about 3 h
on a single core of an Intel Xeon 3.5 GHz processor.
Data Analysis. Values of the root-mean-square deviation

(RMSD) between the experimental structures and predicted
models based on Cα coordinates were calculated using the
Clusco package.51 Since experimental structures of the studied
proteins are available in the form NMR ensembles of different
conformational states, we calculated RMSD values with respect
to all of the available states, and the lowest RMSD values are
reported. It is important to note that the structural flexibility in
the investigated NMR ensembles is high in some cases and
likely to be underestimated.52 Since NMR ensemble models
can be characterized by a high level of uncertainty of the atomic
coordinates, the reported RMSD values should not be treated
as a strict measure of the difference between the experimental
structure and the predicted models.
A tilt angle was defined as the angle between the membrane

normal (z axis) and a line fitted to the Cα coordinates of a helix
(helix positions were predicted using TOPCONS). In the case
of multiple-helix proteins, the average value of their tilt angles is
reported.
The analysis of native contacts (presented in Figure S4 in the

Supporting Information) was performed using Cα coordinates
and two contact cutoffs: 6 Å for contacts close in sequence
(between residues i and i + 4 to i + 7) and 8 Å for contacts
distant in sequence (between i and i + 8 or more distant).

■ RESULTS
Simulations of Protein Insertion and Folding. The

CABS simulations started from completely extended protein

conformations placed outside the membrane environment and
allowed for full flexibility of the modeled proteins during their
spontaneous insertion into the membrane (the simulation
settings are described in Materials and Methods).
Visualization of the simulation trajectories allowed us to

observe the common general steps of protein insertion and
folding. The observed mechanisms toward the near-native
structure share the following stages: (1) helix formation, (2)
helix insertion into the membrane, (3) helix rearrangements
and fluctuations of the secondary structure, and (4) near-native
fluctuations. For four protein cases we present examples of
simulation snapshots showing the evolution toward the near-
native state and the best-accuracy models (Figure 3; additional
analysis of the folding and insertion dynamics is provided in
Figures S2−S5). These four cases represent two folding
behaviors observed in our simulations after the protein
insertion. The first one is almost a two-state folding mechanism
in which near-native ensembles can be clearly distinguished
from other inserted intermediates and the near-native state is
relatively stable (proteins 1A91 and 2LOP). The second one
represents the cases in which the distinction between
intermediate and near-native states is somewhat blurred and
the near-native state is unstable (proteins 1WAZ and 1WU0).
In all of the protein cases, most of the helical structure (about

80% or more) is formed before insertion into the membrane.
This is consistent with many previous studies showing that
secondary structure formation is a necessary step before
insertion.6,44,53 After insertion, the preformed helices usually
undergo several conformational changes, including threading
the loop from one membrane surface to the other. In more than
half of the trajectories the loop stayed at the same side where it
was initially formed, while in other examples the loop was

Figure 3. Example insertion and folding mechanisms observed in the simulations. For four proteins (PDB IDs 1A91, 1WAZ, 1WU0, and 2LOP), the
figure shows the evolution of the RMSD values (reflecting similarity to the experimental structure) during example simulations. Additionally,
example models illustrating the insertion and folding mechanisms are presented (colored in orange). As the last ones in the row, the lowest-RMSD
models are presented and superimposed with the experimental structures (colored in green). For protein 2LOP, an example trajectory is presented
in the movie provided in the Supporting Information.
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threaded to the other side of the membrane. The conforma-
tional changes eventually resulted in a near-native topology. In
all cases, the path to near-native ensembles is coupled with
decreasing radius of gyration (Figure S2). The accuracy of the
lowest-RMSD models was in the range of ∼2−5 Å from the
experimental structure, depending on the protein (the exact
RMSD value for each protein is given in the next section).
Mutual helix rearrangements are usually accompanied by
secondary structure fluctuations (in some cases including
disruption of helix continuity and kink formation). Finally,
fluctuations of near-native folds usually involve relatively small
(1A91 and 2LOP) or larger (1WAZ and 1WU0) movements of
unstructured fragments (loops or unstructured protein ends)
and changes in the tilt angles (Figures S3 and S5). Additional
analysis of the tilt angle for the specific test case 1IIJ (the
simplest topology from the test set of a peptide forming a single
membrane-spanning helix in the native form) showed two-state
dynamics (Figure S6). The identified two states are a near-
native transmembrane state and an interface state (in which the
helix is located on the surface of the membrane), which is
consistent with experimental54 and theoretical55 findings.

The observed folding and insertion mechanisms are
consistent with the widely accepted two-stage model or the
three-stage model for the folding of α-helical MPs.56 According
to the two-stage model, the membrane insertion of
independently stable α-helices is followed by mutual helix
packing within the membrane. For some proteins, the two-stage
model was extended to the three-stage model,57 in which the
third stage may involve folding of loops or binding of prosthetic
groups or other proteins (e.g., oligomer assembly).
As shown in the previous studies of the globular protein

folding process,22−27 CABS Monte Carlo dynamics provides a
realistic picture of the long-time dynamics of protein systems.
This is possible because the MC sampling scheme is based on a
long series of very local (fast) randomly selected conforma-
tional transitions mimicking the long-time evolution of the
protein structure. An analogous MC scheme was applied in this
work to MPs to model the process of protein insertion into
membranes. Similar simulations of protein insertion into the
membrane have been also successfully performed using
somewhat simpler coarse-grained models.58,59 Providing the
mechanisms of membrane insertion and structure assembly,
including the formation of secondary structure elements,

Figure 4. Selection of models using structural clustering. The plots present CABS energy vs similarity to the experimental structure (RMSD value)
for four example trajectories of four proteins (PDB IDs 1A91, 1WAZ, 1WU0, and 2LOP). Trajectory models are colored according to the clustering
procedure as belonging to clusters of the most common conformations (clusters are numbered according to the number of models, with the first one
the largest) or rejected by initial filtering (see the legend).
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tertiary structure, and the straightforward possibility of
quaternary structure assembly, the CABS model enables
modeling of very complex dynamic processes. This possibility
distinguishes the presented model from other approaches
requiring, for example, the constrained predefinition of protein
secondary and higher-order structure.21 However, there are
several limitations of the CABS-membrane model besides the
obvious limitations of coarse-grained force fields. In CABS, the
membrane structure is highly idealized as a continuous,
hydrophobic solvent environment with a smooth transition to
the polar solvent environment (as illustrated in Figure 1c). The
local moves of protein fragments (and their frequency) used in
the MC dynamics scheme are the same within and outside the
model membrane. In this way, a possible effect of coupling of
local moves of a protein and lipids on the system dynamics is
crudely preaveraged. Furthermore, the possible long-time
fluctuations of the membrane size and shape are neglected.
These limitations may somewhat distort the time scale of the
observed dynamics and should be kept in mind when
interpreting specific applications of the model.
Blind Selection of Native-like Models. Since CABS

simulations start from random protein conformations placed
outside the implicit membrane, the simulation trajectories
consist of a significant number of transient protein con-
formations in the process of coupled folding and insertion into
the membrane. In order to blindly filter out the protein
conformations that are plausibly folded and membrane-
oriented, we developed and tested a selection procedure
based on the following steps: (1) initial filtering, (2) structural
clustering, (3) reconstruction to the all-atom representation,
and (4) minimization and scoring in the all-atom force field.
The initial filtering is based on TOPCONS,60 a method for

predicting MP topology using the protein sequence only.
TOPCONS is used to assign the length and sequence position
of helical fragments. This knowledge is used to check whether
the predicted TM fragments adopt a proper secondary
structure and, if so, to calculate angles between helices and
the bilayer. Recognition of α-helices is based on simple
geometrical criteria based on Cα distances with some tolerance
allowing for kinks and bends. Models fulfilling the following
criteria were rejected: largely different secondary structure
assignment than the one predicted by TOPCONS, having
helices with unusual membrane angles (based on TMPad
database statistics;61 a cutoff of 45 deg was used), and poor
packing models when two helices are not in contact with each
other.
In the second step, structural clustering is performed on all of

the initially filtered models using the Clusco package.51 The K-
means clustering method is used, with the maximum number of
clusters set to 10. Figure 4 shows example results from the
clustering of four trajectories (for the four proteins also
presented in Figure 3).
In the third step, all of the models assigned to any of 10

clusters are reconstructed into all-atom structures using
ModRefiner.62

Finally, in the fourth step, each model is optimized and
scored using the implicit membrane model 1 (IMM1) force
field.63 The IMM1 method is a semiempirical implicit-solvent
force field with all protein atoms except for nonpolar
hydrogens. The IMM1 method allows computation of the
energy of a protein with solvation terms; hence, it is very useful
to compare structures with different conformations and

different orientations in the membrane.64 Energy evaluation
included 2000 steps of minimization with frozen Cα atoms.
The top-ranked models are presented in Figure 5 together

with superimposed experimental structures and the best-

accuracy (lowest-RMSD) models obtained in CABS simu-
lations. In some cases, the top-ranked models and best-accuracy
models are of similar topology and resolution, while in other
cases some distinct differences occur. The most common
reason for the largest differences is that in the case of top-
ranked models longer and straighter helices are energetically
preferred over those with kinks (see cases 1IIJ, 1N7L, and
2KSD in Figure 5) and over shorter helices ending with
irregular structure fragments (see case 2MOZ in Figure 5). The
other differences concern slightly different arrangements of α-
helices with respect to the membrane in terms of their tilt
angles or degree of immersion.
The presented prediction accuracy of the CABS-membrane

method is comparable to the performance of the state-of-the-art

Figure 5. Comparison of predicted and experimentally determined
models. For each protein, three kinds of structures are presented (after
their superimposition): the experimentally determined structure
(colored in green), the model having the lowest RMSD value (colored
in magenta), and the top-ranked model (colored in red). Additionally,
PDB IDs and RMSD values of the presented models are shown.
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methods for the de novo prediction of helical MPs that have
been summarized in a recent review.4 According to the review,
the best performance for small proteins (up to 100 residues) is
offered by the Rosetta-membrane method,44,45 which provides
models with RMSD values below 5 Å. However, it has to be
noted that the Rosetta-membrane method is based on
searching of protein fragments in structural databases and
therefore is not a purely de novo approach independent of the
availability of protein structure data. Other successful de novo
methods for predicting α-helical MPs4 are based on deriving
evolutionary constraints from multiple sequence alignments
built for the query sequence.65 Thus, in comparison with the
aforementioned state-of-the-art methods, CABS-membrane is a
qualitatively different approach that does not require structural
fragments of similar proteins or sequence data of homologous
proteins. This opens up interesting possibilities for combining
the CABS-membrane method with state-of-the-art tools in
which, for example, the CABS-membrane approach can be used
to enhance prediction of ambiguous protein fragments that do
not exist in structural databases or are missing in comparative
sequence analysis.

■ CONCLUSIONS
In this work, we validated the CABS-membrane model, a
simple extension of the CABS model for de novo simulations of
short α-helical MPs. Using no information about the structure
of the modeled proteins or evolutionary data, we performed
simulations of protein folding and insertion into a simplified
membrane model. The simulations yielded protein models that
are close to the experimentally determined structures.
The presented multiscale modeling pipeline based on the

combination of CABS-membrane coarse-grained and atomistic
simulations can be potentially improved, either in its first
coarse-grained stage (e.g., by derivation of the within-
membrane statistical force field) or/and in the second all-
atom stage (e.g., by merging with tools for reconstruction, final
model optimization, and scoring that are more accurate or
better-suited to handling CABS coarse-grained models9,66).
As presented in the CABS modeling studies of globular

proteins (see Materials and Methods), even sparse structural
data (taken from experimental studies or predicted from
evolutionary analysis) can be effectively utilized in the
prediction of protein structure and dynamics (after translation
into the form of distance restraints). Analogously, the method
for simulations of short α-helical MPs presented here can be
easily extended to more sophisticated modeling schemes based
on structural data from various sources (e.g., from homologous
proteins with known structure, residue−residue contact
predictions based on evolutionary data, or sparse experimental
data), which will enable the modeling of much larger MPs.
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Movie showing an example trajectory of insertion and
folding of the three-helix membrane TMEM14A protein
fragment (PDB ID 2LOP) using the CABS-membrane
protein model. (AVI)
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