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Abstract

Motivation: Comparing protein tertiary structures is a fundamental procedure in structural biology

and protein bioinformatics. Structure comparison is important particularly for evaluating computa-

tional protein structure models. Most of the model structure evaluation methods perform rigid

body superimposition of a structure model to its crystal structure and measure the difference of

the corresponding residue or atom positions between them. However, these methods neglect in-

trinsic flexibility of proteins by treating the native structure as a rigid molecule. Because different

parts of proteins have different levels of flexibility, for example, exposed loop regions are usually

more flexible than the core region of a protein structure, disagreement of a model to the native

needs to be evaluated differently depending on the flexibility of residues in a protein.

Results: We propose a score named FlexScore for comparing protein structures that consider flexi-

bility of each residue in the native state of proteins. Flexibility information may be extracted from

experiments such as NMR or molecular dynamics simulation. FlexScore considers an ensemble of

conformations of a protein described as a multivariate Gaussian distribution of atomic displace-

ments and compares a query computational model with the ensemble. We compare FlexScore

with other commonly used structure similarity scores over various examples. FlexScore agrees

with experts’ intuitive assessment of computational models and provides information of practical

usefulness of models.

Availability and implementation: https://bitbucket.org/mjamroz/flexscore

Contact: dkihara@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are intrinsically flexible molecules. Flexibility is essential in

understanding protein activity where conformational entropy has a

major role, including protein-ligand (Tzeng and Kalodimos, 2012),

protein–protein interactions (Betts and Sternberg, 1999), protein

allostery (Popovych et al., 2006), and protein folding.

Although it is conventional to consider a single structure for a pro-

tein particularly when the structure was solved by X-ray crystallog-

raphy, a protein can change its conformation in different

experimental conditions (Andrec et al., 2007; Garbuzynskiy et al.,

2005; Kosloff and Kolodny, 2008). Furthermore, there is compelling

evidence that indicates even X-ray diffraction data contains flexibility

information and that diffraction data can be interpreted into different

conformations (DePristo et al., 2004; Kuzmanic et al., 2011). Indeed,

a group of structural biologists proposed to deposit an ensemble of

structures even for X-ray crystallography to public databases so that

data represent structural heterogeneity and dynamics more properly

(Furnham et al., 2006). Thus, in principle it is more appropriate to

represent a protein structure as an ensemble of alternative conform-

ations (Fenwick et al., 2011; Olsson et al., 2014). In practice, flexibil-

ity information of a protein can be obtained either from experiments,

such as NMR, or computational analysis including molecular dy-

namics (MD) simulations and normal mode analysis. By bringing

flexibility into the picture of proteins, the protein sequence-to-

structure-to-function paradigm (Fetrow and Skolnick, 1998) must be

revised to sequence-to-structure-to-dynamics-to-function.

Reflecting the current situation that a protein is usually repre-

sented with a single conformation, most of the commonly used pro-

tein structure model evaluation methods compare a model against a

single structure of the protein (‘the native structure’). For example,

VC The Author 2016. Published by Oxford University Press. i314
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32, 2016, i314–i321

doi: 10.1093/bioinformatics/btw262

ISMB 2016

 by guest on June 15, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

https://bitbucket.org/mjamroz/flexscore
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw262/-/DC1
Deleted Text: -
Deleted Text: ,
Deleted Text: s
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://www.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


the most commonly used dissimilarity measure, the root mean

square deviation (RMSD), quantifies difference of corresponding

positions of two rigid structures after optimal superimposition

(Kabsch, 1978):

rmsdðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

���xA
i � xB

i

���2
vuut (1)

where A and B are the Cartesian coordinates of atoms of two proteins,

xA
i is the coordinates of atom i in protein A and N is the number of

atom pairs to be compared. In the protein structure prediction field,

measures that are based on RMSD, such as GDT-TS (Zemla, 2003),

TM-score (Zhang and Skolnick, 2005), are also used, which all com-

pare two rigid structures. There are other methods that compare dif-

ferent representations of protein structures (Hasegawa and Holm,

2009), but they all belong to the rigid structure comparison realm and

suffer from the same problem of neglecting protein flexibility. In eval-

uating a computational model, neglecting flexibility in the native

structure results in overestimating displacement of residues in the

model at flexible regions and underestimating displacement at rigid re-

gions of the protein. For example, structure difference in a model at a

flexible tail of the protein does not need to be penalized as long as the

tail is modeled within the range of reasonable tail motion. On the

other hand, a displacement of residues in a model at the core of a pro-

tein may be considered as a severe error of the model. Simply superim-

posing a rigid model to the single rigid conformation of the native

structure cannot distinguish these two cases.

Although considering the flexibility is still not common for eval-

uating protein structure prediction models, there have been several

structure comparison methods that consider protein flexibility. In

the simplest form, flexibility can be indirectly represented as weights

assigned to each residue in a pair of protein structures to be com-

pared, where weights are computed from the B-factors in crystallog-

raphy (Wu and Wu, 2010) or theoretical estimates of fluctuation.

Weights can be also computed from the distance of corresponding

residues in the previous round of alignment in iterative computa-

tions of RMSD (Damm and Carlson, 2006). FlexE uses a residue-

level elastic network model and evaluates the difference of two

structures in terms of energetic cost for deforming one structure into

the other (Perez et al., 2012).

An alternative strategy is to consider ensembles of protein struc-

tures. Brüschweiler proposed a fast computational method for aver-

aging pairwise RMSD of two ensembles (Brüschweiler, 2003). The

Kullback-Leibler divergence was used to quantify the similarity of

two structure ensembles (Lindorff-Larsen and Ferkinghoff-Borg,

2009). An algorithm was developed for specifically aligning struc-

ture ensembles in a MD trajectory, which minimizes the variance of

structures as well as pairwise displacement of structures from adja-

cent time frames (Gapsys and de Groot, 2013). THESEUS

(Theobald and Wuttke, 2006) and bFit (Mechelke and Habeck,

2010) use maximum likelihood to superimpose flexible protein

structures where atom positions are assumed to have Gaussian dis-

tribution. An advantage of these two methods is that they are free of

ad hoc parameters.

Related works include structure alignment algorithms that expli-

citly consider local conformational change in structures caused by

flexibility (Shatsky et al., 2002; Ye and Godzik, 2003) and protein

flexible functional site identification (Moll et al., 2010; Sael and

Kihara, 2012).

In this work, we propose a score for evaluating quality of protein

structure models by taking flexibility of the native protein structure

into account. The score named FlexScore (FS) quantifies how well

each residue in the query model locates within the displacement

range observed in structure ensemble. Among the existing methods

mentioned above, only FlexE was designed for structure model

evaluation. In contrast to FlexE, which needs parameter setting for

an underlying elastic network model and outputs an energy value to

a model that is not straightforward to interpret, our method does

not need arbitrary parameters and provides an intuitive score that is

easy to compare with conventional structure evaluation scores.

Below we first introduce FS and clarify the characteristics of the

score using illustrative models. Then we compare FS with RMSD,

GDT-TS (Zemla, 2003), and TM-score (Zhang and Skolnick, 2005)

on several computational models. Lastly, FS was applied to evaluate

computational models that were submitted to the Critical

Assessment of Techniques for protein Structure Prediction (CASP;

Moult et al., 2014). It is shown that FS provides more reasonable

and complete evaluation for structure models in comparison with

other commonly used structure similarity scores.

2 Methods

We begin with outlining the algorithm of the structure superimpos-

ition method that was used for computing FS and then explain the

dataset of protein models we used.

2.1 Maximum likelihood superimposition of protein

ensembles
First, an ensemble of alternative conformations of a reference struc-

ture (native structure), against which computational models will be

compared, is obtained from MD simulation (details given in the

next section) or an experimental method, e.g. NMR. Then, the en-

semble of conformations is represented as a probabilistic model,

where a probability density function describes each residue Ca atom

displacements from the ensemble mean. A probabilistic model is

defined using structure superimposition by maximum likelihood es-

timation on the multivariate Gaussian model (Hirsch and Habeck,

2008; Mechelke and Habeck, 2010; Rother et al., 2008). We used

the framework of THESEUS for this ensemble superimposition, as it

properly considers variance and correlations of atoms in the struc-

tures in an explicit fashion. Below we briefly outline the algorithm.

For more details refer to the original paper (Theobald and Wuttke,

2006).

The coordinates of a structure Xi in an ensemble can be repre-

sented as

Xi ¼ Mþ Eið ÞRT
i � 1ktT

i (2)

using a mean structure M, a zero-mean Gaussian matrix displace-

ment Ei that follows a Gaussian distribution of Nk,3(0, R, I3), where

R is a k � k covariance matrix where k is the number of Ca atoms in

the structure, a rotation matrix Ri, a 3 � 1 translational vector ti,

and a k � 1 column vector of ones. T denotes transpose of a matrix.

As commonly used in Bayesian analysis, eigenvalues of the covari-

ance matrix are assumed to be distributed according to an inverse

Gamma distribution, which is defined with a parameter a.

According to this multivariate Gaussian error model of the na-

tive state ensemble, the parameters can be iteratively estimated by

optimizing the following log-likelihood function:

lh ¼ l R; t;M; ajX;Rð Þ ¼ lðR; t;M;RjXÞ þ l ajkð Þ (3)

This is called a hierarchical model, which combines the log-

likelihood that comes directly from Equation (2) (first term) and the

log-likelihood of an inverse Gamma distribution, where k are

FlexScore: protein structure model evaluation i315
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eigenvalues of R. X is the ensemble that contains n structures. The

parameters are estimated iteratively, given X and an initial value of

estimated covariance,
P̂
¼ I and a¼0.

First, t, M, and R are estimated iteratively. It is shown that the

translation t can be estimated as

bt i ¼ �
XT

i

P�11k

1T
k

P�11k

(4)

Hat (^) denotes an estimated value. The rotation matrix R is

derived by single value decomposition (SVD) of

MT
P�1 Xi þ 1kbtT

i

� �
. The mean structure M is computed as the

average of the translated/rotated ensemble structures coordinates.

Then, the covariance matrix can be estimated as usual:

X̂
s
¼ 1

3n

Xn

i¼1

Xi þ 1kbtT
i

� �
Ri � bM� �

Xi þ 1kbtT
i

� �
Ri � bM� �T

(5)

Here
X̂

s
denotes the sample covariance matrix that is computed

for the first term in the right hand side of Equation (3). Next, a of

the inverse Gamma distribution and the eigenvalues k are estimated

iteratively by solvingX̂
h
¼ 3n

3nþ 3

2a
3n

I þ
X̂

s

� �
(6)

and

ba ¼ k

2 mE k�1
sm ja; c; c

� 	
þ
Xk�m

i¼1

k�1
i

 ! (7)

where
P̂

h is the estimated covariance matrix of the hierarchical

model, the left side of Equation (3), m is the number of missing

eigenvalues, E k�1
sm ja; c; c

� 	
is the expected value of the inverse of the

m smallest missing eigenvalues conditional on the smallest observed

eigenvalue c, c is the shape parameter of the inverse Gamma distri-

bution, which is set to 0.5. Once a and
P̂

h are updated, t, M, and R

are again updated and iterations continue until convergence.

2.2 FlexScore
Given the estimated covariance matrix

P̂
h and the ensemble meanbM, it is possible to superimpose a protein structure model to the en-

semble, which was not primarily included in the original ensemble.

Consider a computational protein structure model Y. Y contains the

amino acid sequence identical to the reference protein structures, X.

Using
P̂

h and bM the translation vector and the rotation matrix for

Y can be computed by applying Equation (4) for the translation vec-

tor and by SVD of MT
P̂�1

h Y þ 1kbtT
i

� �
for the rotation matrix.

After translation and rotation of Y, we define FlexScore, FS, as

FSðYÞ ¼ 1

k

Xk

i¼1

1ffiffiffiffi
ki

p k bMi � Ysup
i k (8)

where ki is the eigenvalue of the covariance matrix
P̂

h, thus vari-

ance of Ca atom i and Ysup
i is the position of Ca atom i after super-

imposition. FS has a simple interpretation: how far, on average,

residue positions of the computational model are to the native state

ensemble in standard deviations units. The best score of 0 is ob-

tained for a model if the model has the identical conformation as the

mean. As a model deviates from the mean structure, the score will

be larger.

2.3 Protein native-state ensembles
An ensemble of native structures of a target protein was constructed

by a MD simulation. A 10-ns-long MD simulation of the native state

of a target protein was performed with bound ligands and ions with

explicit water representation using a structure deposited in the

Protein Data Bank (PDB). 1 MD run is sufficient because as shown

in Supplementary Figure S1, flexibilities observed in independent

MD trajectories are usually consistent with each other. Selenium

atoms in selenomethionine residues were replaced with Sulphur.

NMR-solved protein structures were simulated using the first model

in the PDB files. The force field used for simulations was AMBER-

99SB* with a NVT system. For details of the simulations, see a

Supplementary Material in a paper by Hospital et al. (2012). From a

simulation trajectory, we extracted structure at each 10 picoseconds

to form an ensemble of structures.

2.4 Computational protein models
We chose 10 CASP 10 and 18 CASP11 targets as follows, which

meet the following criteria for applying and evaluating FS: (i) mono-

mers; (ii) no missing residues in the middle of chains in the PDB file;

(iii) does not contain ligands for which force-field are not developed

yet. For these targets, we analyzed server models with a complete

chain. The number of models for each target ranged from 201 to

257 (average: 224.9). For the CASP11 targets, 10 ‘template-based

modeling’ and 8 ‘free-modeling’ where chosen. The number of mod-

els for CASP11 targets ranged from 163 to 191 (average 175.5).

2.5 Conventional scores
FS was compared with RMSD (Equation (1)) and two widely used

model evaluation scores, GDT-TS (Zemla, 2003) and TM-Score

(Zhang and Skolnick, 2005). GDT-TS is the average of fraction of

residues in a model that are predicted within 1, 2, 4, and 8 Å after

superimposing the model to a reference structure of the protein.

TM-Score is also a fraction of residues in a model that are closer

than a heuristic cutoff value to corresponding residue positions after

superimposing the model to a reference structure. Thus, both scores

range from 0 to 1, with 1 as the best score.

3 Results

3.1 FS for two example structures
To illustrate characteristics of FS, we made two structure models for

the C-terminal domain (residue 529–577) of human CSTF-64 pro-

tein (PDB ID: 2j8p). From the first structure model of this protein in

its PDB file (this protein was solved by NMR), two models were

built by manual modification, which have identical RMSD, GDT-

TS, and TM-Score values (1.47, 0.95, and 0.93, respectively) be-

tween each other. The first model (shown in green in Fig. 1A) was

modified at a helical region (residues 550–554), while the second

model (shown in blue) was modified at the C-terminal fragment

(residue 573–577). Referring to the structure ensemble of this pro-

tein (all NMR models in the PDB file) shown in gray in the figure,

the second model (blue) would be better than the first one in green

because the deviation of the blue model at the C-terminus is still in

the range of observed structure variation. In contrast to the existing

scores that give the same quality evaluation to the two models, FS

gave clear distinction between these models: the first model had FS

¼ 1.96, and the second model had FS ¼ 1.42. Figure 1B shows the

variance of the NMR ensemble, and the deviation of the two models

from the mean structure, and FS computed at each residue. It is clear

that the deviated helical region in the first model was appropriately

i316 M.Jamroz et al.
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penalized with a large value, while the C-terminal region of the se-

cond model is not.

3.2 FS for structure models
Next, we computed FS for structure models of the 28 CASP targets

and compared the scores with RMSD, GDT-TS, and TM-Score.

Table 1 summarizes correlation of the FS and the other three scores.

Overall, FS correlated well for most of the cases with GDT-TS,

TM-Score, and RMSD. Because the smaller the better for FS, it has

positive correlation with RMSD while negative with GDT-TS and

TM-Score. However, there are exceptions, T0651, T780, T0808,

T0814, and T0853, where FS has a strong correlation to RMSD

while essentially no correlation with GDT-TS and TM-Score. In

these cases, the quality of all the models is low as can be seen in the

average score values in Table 1. Some models have long unphysical,

totally stretched regions, which made their RMSD large. These bad

regions of a model were severely penalized in RMSD and FS, which

made their correlation high with each other but the correlation to

GDT-TS and TM-Score low, because such regions were neglected by

these two scores.

Table 1 shows that RMSD has the largest correlation among the

three scores with FS. However, RMSD and FS have substantially

lower correlation for T0655, T0675, T0716, T0769, and T0773

(Fig. 2A). This is owing to the flexible nature of these target pro-

teins, which was shown in Figure 2B. Compared with a rigid target

structure T0714 shown in Figure 2B for which FS has a correlation

coefficient of 0.98 with RMSD, these three targets have one or two

flexible regions. Because RMSD optimizes non-weighted (homosce-

dastic) mean deviation in comparing a model and a reference struc-

ture, it results in overestimating error for such flexible proteins,

which makes a lower correlation with FS. Note that as shown in

Supplementary Table S1, overall correlation between GDT-TS and

TM-Score is slightly higher than that of between FS and RMSD.

Correlation between the scores for invididual targets are provided in

Supplementary Figure S2, where differences between FS and RMSD

are observed in many targets.

We have also examined score correlation separately for template-

based (TB) targets and free modeling (FM) targets (* in Table 1).

Naturally, the quality of computational models are higher for TB

targets (i.e. higher GDT-TS, TM-Score, and lower RMSD values)

than FM targets, because the latter are more difficult to model. For

the TB targets, FS showed high correlation to RMSD and had mod-

erate correlation to GDT-TS and TM-Score (0.488 and 0.513,

Fig. 1. Two artificially modified models showing fluctuation-dependence of

FS. (A) Structure superimposition of native-ensemble of the protein, 2j8p,

determined by NMR (gray) and two models (blue and green). Both models

have identical RMSD, GDT-TS and TM-Score (1.47, 0.95, and 0.93, respect-

ively) but distinct FS (green model: 1.96, blue: 1.42). (B) Structural variance of

the NMR ensemble, the distance of residues in the two models to the mean

structure of the NMR ensemble, and the FS of each residue of the models

Table 1. Correlation of FS with the other scores

Target GDT-TS TM-

SCORE

RMSD <GDT-TS> <TM> <RMSD> <FS>

T0651* �0.04 �0.13 1.00 0.27 0.36 24.02 62.76

T0655 �0.83 �0.88 0.77 0.49 0.58 13.95 15.41

T0657 �0.94 �0.95 0.92 0.63 0.68 7.69 9.64

T0662 �0.97 �0.96 0.99 0.67 0.67 3.87 5.24

T0667 �0.96 �0.98 0.98 0.57 0.69 6.73 13.34

T0669 �0.83 �0.84 0.96 0.46 0.50 9.21 16.70

T0673 �0.65 �0.58 0.95 0.33 0.27 11.85 22.87

T0675 �0.62 �0.56 0.74 0.37 0.33 11.14 6.96

T0714 �0.91 �0.92 0.98 0.78 0.79 2.67 5.24

T0716 �0.82 �0.79 0.88 0.65 0.62 7.55 5.62

T0763* �0.30 �0.48 0.99 0.16 0.20 18.18 54.71

T0767* �0.48 �0.69 1.00 0.11 0.19 33.84 94.69

T0769 �0.88 �0.87 0.80 0.50 0.53 11.58 13.22

T0773 �0.91 �0.89 0.85 0.52 0.49 9.45 12.04

T0777* �0.63 �0.72 1.00 0.10 0.21 31.60 81.96

T0780 0.08 0.03 0.99 0.29 0.37 23.13 32.47

T0782 �0.88 �0.89 0.99 0.45 0.49 9.20 17.83

T0785* �0.54 �0.59 0.97 0.18 0.20 16.40 37.16

T0790* �0.28 �0.57 1.00 0.11 0.19 26.15 50.85

T0803 �0.27 �0.30 0.98 0.34 0.39 13.84 35.47

T0808* �0.02 �0.15 0.99 0.11 0.21 26.47 70.98

T0814* 0.10 �0.43 0.98 0.10 0.19 27.14 75.96

T0829 �0.78 �0.72 0.95 0.47 0.42 9.63 22.38

T0832* �0.41 �0.64 0.97 0.15 0.22 20.65 51.35

T0833 �0.94 �0.95 0.96 0.57 0.60 7.50 11.78

T0853 �0.27 �0.32 0.99 0.21 0.26 17.55 36.25

T0856 �0.89 �0.92 0.99 0.69 0.77 4.01 10.81

T0857 �0.89 �0.90 0.95 0.29 0.31 13.96 13.27

The four columns on the right side show the average score of the target

proteins. A total of 18 CASP11 targets are shown in the bottom half. Stars (*)

indicate free-modeling targets.
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respectively). For FM targets, the correlation to the GDT-TS and

TM-Score dropped substantially to a low level (0.143 and 0.219)

while the correlation to the RMSD became even higher for FM tar-

gets (0.93 and 0.99, respectively).

We now discuss some examples of models that have inconsistent

relative scores by FS with RMSD, GDT-TS or TM-Score. The first

examples are models of T0716 (Fig. 3). For this target, FS has over-

all sufficient correlation to the other three scores (Fig. 3A), 0.88

with RMSD, and �0.82 and �0.79 with GDT-TS and TM-Score.

However, there are notable differences that deserve attention. There

are models with similar FS between 2.5 and 4 but have diverse

RMSD values that range between 4 and 8 Å (the right panel in

Fig. 3A). Figure 3B shows superimposition of two such models rela-

tive to the ensemble structures generated by MD. These two models

in green and orange have largely different RMSDs of 3.93 Å and

5.40 Å while with similar FS s of 2.75 and 2.71, respectively.

As Figure 3B shows, the target protein is flexible in its N- and C-ter-

minus. Considering the flexible regions of the protein, the quality of

both models are essentially the same, because the core region of the

two models is modeled correctly and the tail region is within the

ensemble.

The second pair of models (Fig. 3C) has a similar GDT-TS score

of 0.52 (green) and 0.51 (orange) but has different FS of 7.4 and

24.1, respectively (the left panel, Fig. 3A). As the figure shows, al-

though the two models share common structures with the crystal

structure at the middle part of the protein (the left side in the figure),

the green model has a better agreement of the topology to the struc-

ture ensemble. The orange model has long-stretched helices in both

Fig. 2. Correlation of FS and RMSD. (A) Correlation coefficient between FS

and RMSD relative to the average standard deviation of Ca atoms of ensem-

ble structures. (B) The flexibility of four target proteins, T0716, T0714, T0675

and T0655. The standard deviation of each Ca atoms is shown. T0714 is an ex-

ample of rigid structures for comparison

Fig. 3. Score comparison of models for T0716. (A) Score correlation of FS

with GDT-TS, TM-Score and RMSD (left to right). The correlation coefficient

between the two score was �0.82, �0.79, and 0.88, respectively.

(B) Superimposition of two models (green and orange) for T0716 onto MD-

derived structural ensemble (thin lines). Both models have a similar FS (2.75

and 2.71), GDT TS (0.75 and 0.73) and TM-Score (0.72 and 0.70), but distin-

guishable RMSD (3.93 Å and 5.40 Å, respectively). (C) Superimposition of an-

other pair of models for T0716. They have similar GDT-TS (0.52 and 0.51 for

green and orange) and TM-Score (0.48 and 0.49), but have substantially dif-

ferent FS of 7.4 and 24.1, respectively

i318 M.Jamroz et al.

 by guest on June 15, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: ,
Deleted Text: very 
Deleted Text: FlexScore
Deleted Text: ,
Deleted Text: FlexScore
Deleted Text: -
Deleted Text: -
Deleted Text: FlexScore
Deleted Text: to 
Deleted Text: to 
Deleted Text: FlexScore
Deleted Text: very 
Deleted Text: ve
Deleted Text: very 
Deleted Text: FlexScore
http://bioinformatics.oxfordjournals.org/


chain termini, which largely disagree with the reference structure en-

semble. Reflecting these characteristics of the two models, FS for the

green model is substantially better than the orange model (7.4 for

the chain in green and 24.1 for the chain in orange).

The next examples are for the target T0655 (Fig. 4). Looking at

the score correlation in Figure 4A, there are a cluster of models that

have a GDT-TS score around 0.5 or TM-Score of 0.6. FS, in con-

trast, distinguishes the quality of these models with a diverse range

of score values. Figure 4B shows such examples. The two models in

Figure 4B capture correct b-class fold in the middle of the protein.

The green model has totally unstructured tails that are far off from

the structure ensemble of its reference structure, which is reflected in

a substantially worse FS of 23.05 than the orange one (9.2). This

quality difference can be also detected by RMSD (25.93 Å and 7.28

Å, respectively, for the green and the orange model); however, the

structure alignments computed for the green model by the FS and

the RMSD computation are different (Supplementary Fig. S3).

RMSD of the core region of the green model (residue 22–142) by FS

computation was 4.01 Å, while the RMSD superimposition gave 17.

22 Å. Thus, considering the ensemble helped making better align-

ments in the FS case.

The last example is from the target T0714 (Fig. 5). These two

models have similar GDT-TS (0.84 and 0.83 for the green and the

orange model, respectively), and similar TM-Score (0.83 and 0.86,

respectively). We also computed GDT-HA score for these models,

which was 0.64 and 0.61, respectively. In contrast, FS indicates that

the orange model, which has a score of 2.69 has a better quality

than the green one, which has a score of 4.42. This is a reasonable

evaluation considering the larger number of incorrect regions in the

green model that are off from the ensemble structures (indicated

with blue circles in the figure).

3.3 FS using NMR ensemble
In Figure 6, we compared FS computed using a MD-generated en-

semble and an NMR-derived ensemble. The two scores are

consistent, particularly for models with higher accuracy (FS < 10),

with an overall correlation coefficient of 0.994.

3.4 Ranking prediction groups in CASP models
In the last section, we examine how performance of prediction

methods are ranked among peers with FS. For this experiment, we

used the 10 CASP10 targets selected in Section 2.4. There were 68

groups who submitted server models to at least one of these 10 tar-

gets in CASP10, who were subject to the analysis. In CASP, a group

can submit up to five models for a target, but here only the first

models (TS1 model) were evaluated. Ranking of the groups with FS

was compared with those by three other scores, GDT-TS, TM-

Score, and RMSD.

Fig. 4. Score comparison of models for T0655. (A) Score correlation of FS

with GDT-TS, TM-Score and RMSD (left to right). The correlation coefficient

between the two score was �0.83, �0.88 and 0.77, respectively.

(B) Superimposition of two models (green and orange) for T0655 onto MD-

derived structural ensemble (thin lines). Both models have a similar GDT-TS

score (0.50 and 0.54), and TM-Score (0.61 and 0.66), but they have different

FS (23.05 and 9.2, respectively)

Fig. 5. Superimposition of two models of T0714 on to MD-derived structure

ensemble (thin lines). The model in green and orange have similar GDT-TS of

0.84 and 0.83, and TM-Score of 0.83 and 0.86, respectively. FS of the two

models are 4.42 and 2.69, for the green and the orange models, respectively

Fig. 6. Comparison of FS using a MD-generated ensemble and an NMR-

derived ensemble for a protein solved by NMR (T0176). Scores of 235 models

were plotted
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For this comparison, we devised another score named FS-GDT

based on FS, which follows the concept of GDT-TS. Similar to the

GDT-TS that counts the fraction of Ca positions that fall within 1,

2, 4 and 8 Å to the corresponding positions in the reference structure

after superimposition, FS-GDT computes the average fraction of

residues (Ca positions) that have FS within 1, 2, 4, and 8.

Ranking of the groups was determined by the accumulated

Z-score in the same way as performed for the official CASP rank-

ings: (i) For a target, Z-scores from a raw score were computed for

all TS1 models. (ii) Then, bad models with a Z-score of �2.0 or

lower were removed as outliers. (iii) Z-scores were recalculated

without the outliers; (iv) and finally, each group accumulates the

Z-score from the previous step from each target. Table 2 shows the

group ranking results up to the top 10 groups. Because the purpose

of ranking groups is not to decide who did well and who did not but

to examine similarity of ranking by different scores, the group iden-

tities are denoted with alphabets.

Overall the group ranking by FS and FS-GDT correlated well

with GDT-TS, TM-Score, and RMSD. In Table 2, Group A was

consistently ranked the top by all the scores and every pair of scores

shares at least four groups among the top 5 ranked groups by the

scores. The Spearman’s correlation coefficients between rankings by

FS and FS-GDT against the other three existing scores are all

high, all over 0.9 except for the FS-GDT and RMSD pair (0.806)

(Table 3A). Correlation between FS and FS-GDT with the other

scores is also high when the sum of the Z-scores used to rank the

groups were compared (Table 3B). Thus, while FS provides alterna-

tive evaluation to structure models by reasonably considering pro-

tein flexibility (Section 3.1 and 3.2), evaluation is close and

consistent with the other existing scores when it comes to ranking of

groups.

Equivalent data to Tables 2 and 3 for the CASP11 targets are

provided in Supplementary Material (Supplementary Tables S3 and

S4), which consistently show strong correlation between group

rankings by different scores.

4 Discussion

We proposed a new score named FS and its variant, FS-GDT, which

evaluates the quality of computational protein structure models by

considering flexibility of protein chains. FS effectively distinguishes

deviations of a model from a reference structure at intrinsically flex-

ible and rigid regions, and assigns more permissive scores to the for-

mer than the latter. This is reasonable from the biophysics

perspective of protein structures.

The flexibility of a protein was measured from a MD simulation

of 10 ns because it was long enough to observe large flexibility in

protein terminal regions and to highlight incorrect regions of struc-

ture models that are beyond the range of chain flexibility. For a

CASP11 model, T0733, we extended the MD run to 100 ns, but FS

did not show meaningful change (Supplementary Table S2 and Fig.

S4). The framework provided here is valid in principle with any data

of protein flexibility, and FS would provide reasonable evaluation to

these models under the provided flexibility information.

We point out that MD simulations are easier to perform than it

used to be, for example by using web-based MD tools (Hospital

et al., 2012; Lee et al., 2016). Previously, we developed a method

named FlexPred, which predicts absolute values of residue fluctu-

ation from a tertiary structure (i.e. a PDB file) of a target protein

(Jamroz et al., 2012), which can be also used to obtain flexibility.

At this juncture, it would be of interest to discuss difference of

using MD simulations and using B-factors as the source of fluctu-

ation. As mentioned in Introduction, the work by Wu & Wu intro-

duced a B-factor weighted RMSD (2010). First of all, the level of

fluctuation considered are different between them. B-factors indicate

discrepancy of a solved structure to the X-ray diffraction pattern of

the protein. Thus, although the B-factors were shown to have correl-

ation to residue flexibility observed in computational simulation

(Haliloglu and Bahar, 1998), it is flexibility in the crystal condition

of proteins. It was shown that B-factors are appropriate measure of

fluctuations for stable parts of proteins, but significantly underesti-

mate motion in flexible regions (Eastman et al., 1999). In contrast,

MD used in FS is aimed at considering flexibility of proteins in solu-

tion, which is a more natural environment for proteins. From a tech-

nical stand point, to use B-factors for flexibility value, a weight

parameter needs to be arbitrarily selected because B-factors do not

provide absolute values of flexibility (Wu and Wu, 2010). Also in

FS, flexibility is used more explicitly in the structure superimposition

step than the B-factor weighted RMSD.

The results in the prediction group ranking shows that FS is in

reasonable agreement with the other existing scores. In recent

rounds of the CASP experiments, computational models are eval-

uated with a combination of several scoring terms that examine dif-

ferent structural aspects of models (Kim and Kihara, 2015; Moult

et al., 2014). Combined with other scores, FS will be able to provide

a new viewpoint to the protein structure evaluation. The technique

Table 2. Ranking of prediction groups in CASP10 with different

scores

Rank FS FS-GDT GDT-TS TM RMSD

1 A A A A A

2 B D B B B

3 C B F C C

4 D C C F F

5 E F D D E

6 F E I I G

7 G O (14) G X (24) J

8 H J J L (12) I

9 I Q (17) E G D

10 J H O (14) Q (17) H

FS ¼ FlexScore; FS-GDT ¼ FlexScore-GDT; TM ¼ TM-Score. The alpha-

bets denote the group IDs, which were assigned based on the ranking by

FlexScore. If a group did not appear within top 10 by FlexScore, its ranking

by FlexScore is shown in a parenthesis.

Table 3. Correlation of group ranking in CASP10 by the scores

FS FS-GDT GDT-TS TM RMSD

A. Spearman’s correlation coefficients or the rankings

FS – 0.931 0.930 0.913 0.940

FS-GDT – – 0.935 0.912 0.806

GDT-TS – – – 0.984 0.901

TM – – – – 0.918

RMSD – – – – –

B. Pearson’s correlation coefficients of Sum of the Z-scores of groups

FS – �0.929 �0.962 �0.963 0.976

FS-GDT – – 0.972 0.960 �0.898

GDT-TS – – – 0.994 �0.943

TM – – – – �0.952

RMSD – – – – –
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of considering ensemble structures will be also useful for various

other related problems including multiple protein structure align-

ment, flexible protein–protein or protein–ligand docking, flexible

structure fitting to electron microscopy density maps.
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